80/20 Inc.

STMicroelectronicshasbegunvolumeproductionoftheSTISO621dual-channeldigitalisolator,launchinganewseriesofhigh-performanceICsforindustrialapplicationsandgeneraloptocouplerreplacement.TheSTISO621transfersdatabetweentwoisolateddomainsatupto100Mbit/s,withpulsedistortionbelow3ns,leveragingSTs6kVthick-oxidegalvanic-isolationtechnology.Withtwoindependentunidirectionalchannels,thedeviceperformsasaUARTinterfacehandlingdatainbothdirections.Schmitt-triggerinputstoeachchannelensurehighnoiseimmunity.ThesupplyvoltagestothetwomutuallygalvanicallyisolatedsidesoftheSTISO621areindependentofeachother.Eachhasawidevoltagerange,allowingleveltranslationbetween3.3Vand5.5Vcircuitry.Typicalcommon-modetransientimmunity(CMTI)of65kV/µsprotectsthelow-voltagesideagainsthighswitchingtransientsinharshenvironments.TheSTISO621issuitedtoawiderangeofindustrialandconsumerapplicationsinpowersupplies,motordrives,meters,inverters,batterymonitors,appliances,fieldbusisolators,size-criticalmultichannelisolationadapters,andgeneralisolationthroughoutindustrial-automationsystems.ThedesignistestedinaccordancewithVDE0884-10andUL1577,thespecificationstypicallyappliedtoisolationdevicesforhigh-voltageapplications.TheEVALSTISO62XV1productevaluationboardisavailabletohelpacceleratedesigncompletioninmultipleapplications.TheEVALSTPM-3PHISOreferencedesign,specificallydesignedforthree-phaseisolatedmetering-systemsusecases,isalsoavailable.ItcombinestheSTISO621toseparatehighvoltagedomainswithSTshigh-accuracySTPMS2meteringfront-endICandspecificfirmwarerunningonanSTM32microcontrollertocomputethree-phasemetrologyandpower-qualitydata.Withamaximumworkingisolationvoltage(VIOWM)of1200Vpeak,andhighimpulse-withstandvoltage(VIOTM),galvanicinsulationintegrityismaintainedovertimeandduringanysystemfaults.Twopackagevariantsareoffered.IntheSO8narrow-bodypackagewith4mmcreepageandclearance,theSTISO621hasVIOTMof4800V.TheSTISO621WintheSO8wide-bodypackagewith8mmcreepageandclearancehasVIOTMof6000V.Highperformancelevelisguaranteedfrom-40°Cto125°Ctemperaturerange.ForMoreInformationSTMicroelectronics

IntroductonLM386isalowvoltageaudiopoweramplifier.LM386adopts8-pindoublein-lineplasticpackagewithworkingvoltageof4V-15V.Whenthepowersupplyvoltageis12V,300mWoutputpowercanbeobtainedonan8load.VariousoscillatorscanbeeasilyproducedwithLM386.CatalogIntroductonCatalogISimplestOscillatorIIBlockingOscillatorIIIElectronicPianoIVSquare-waveOscillatorVSinusoidalOscillatorFAQOrdering&QuantityISimplestOscillatorFigure1.CircuitofSimplestOscillatorInFigure1,theoutputendandin-phaseinputendofLM386areconnectedbypiezoelectricceramicchipHTD.Theamplifierformspositivefeedbackandgeneratesoscillation.HereHTDisbothafeedbackcapacitorandasound-generatingdevice.Componentparametersinthefigure:D1~D4are1N4001,C1=220pF,HTDispiezoelectricceramicsheetwithauxiliaryacousticcavity.IIBlockingOscillatorFigure2.CircuitofBlockingOscillatorAsshowninFigure2,asimpleoscillatorconsisitofLM386,C3,C4andloudspeakers.RPandC2makethisoscillatorproduceblocking-oscillation.Afterconnectingthepowersupply,LM386doesnotworkbecausetheinitialterminalvoltageofC2iszero,andthepowersupplychargesC2throughRP.WhenC2chargingvoltageishigherthanacertainvalue,LM386oscillatorstartstovibrate.Astheamplitudecontinuestoincrease,thecurrentconsumptionoftheoscillatoralsoincreases.ThiscurrentflowsthroughRP,anditsvoltagedroponRPalsoincreases,causingtheLM386powersupplyterminal6pinvoltagetocontinuetodrop.EventuallytheLM386cannotworkandtheoscillatorstops.ThepowersupplyrechargesC2viaRPagain,causingthevoltageatC2torise.WhenthevoltageatC2risestoacertainvalue,theLM386oscillatorstartsagain.Inthisway,theoscillatorwillproduceblocking-oscillation,andthespeakeremitsbeep,beep,beepsound.Componentparametersinthefigure:D1~D4are1N4001,C1=C3=220F,C2=47F.C4=0.01F ,RP=4.7K.IIIElectronicPianoFigure3.CircuitofElectronicPianoFigure3isasimpleelectronicpianocircuit.Onthepin3ofLM386,theintegratedcircuithasa10Kresistortoground.Thisbuilt-inresistorandtenscaleresistorsRP1~RP10constitutethetimingresistoroftheoscillator.C2isthetimingcapacitor.ByadjustingthevaluesofRP1~RP10,thespeakerscansequentiallyemitmusicalsoundsfromlowoctavedo,re,mitohighoctavedo,re,mi.KI~K10arekeyswitches.Componentparametersinthefigure:Cl=C3=220F.C2=2200FIVSquare-waveOscillatorFigure4.CircuitofSquare-waveOscillatorFigure4showsasquare-waveoscillatorcomposedofLM386.R1isthetimingresistor.C2isthetimingcapacitor.R2andR3providevoltagebiasforLM386in-phaseinput.BecausethevoltageattheC2terminalcannotchangeabruptly,theinvertinginputterminalpin2oftheLM386islowlevel,andpin5isthemidpointoftheinternalOTLoutputstageoftheamplifier.Itis1/2Vocinstaticstate,anditissuppliedtothethird-phaseinputpin3afterdividingpressureviaR2andR3.Obviouslythepotentialofthispinishigherthanthesecondpin.Therefore,pin5outputshighlevel.ThishighlevelchargesC2viaR1.WhenthevoltageofC2terminalishigherthanthepotentialofpin3,pin5outputslowlevel.C2dischargestopin5viaR1.WhenC2isdischarged,thepotentialofpin2dropsandislowerthanthepotentialofpin3.Pin5outputshighlevelagain.Inthisway,thecircuitformsoscillation,andtheoscillationsignaldrivestheloudspeakertosoundthroughC3.Componentparametersinthefigure:C1=C3=220F,C2=0.33F.R1=22K,R2=1K.R3=9.4KVSinusoidalOscillatorFigure5.CircuitofSinusoidalOscillatorFigure5isasinusoidaloscillatormadeofLM386.ThecircuitadoptsWienbridgeoscillationmode,andtheoutputsignaldistortioncoefficientofthecircuitisverylow.TheflashlampHandtheresistorR3formanegativefeedbackcircuit,whichkeepstheamplitudeoftheoscillatoroutputsignalstableandhaslowdistortion.WhenthevaluesofcapacitorsC1andC2arethesame,theoscillationfrequencyofthecircuitcanbeobtainedbytheformulaf=1/2C1R1R2.Inactualproduction,Hcanuse3V,15mAflashlamp.FAQHowdoesanLM386work?TheLm386integratedchipisalowpoweraudiofrequencyamplifier,whichuseslowlevelpowersupplylikebatteriesinelectroniccircuits.Itisdesignedas8pinminiDIPpackage.Thisprovidesvoltageamplificationof20.Byusingexternalpartsvoltagegaincanberaisedupto200.Islm386anopamp?TheLM386isatypeofoperationalamplifier(Op-Amp)....Inanamplifiercircuit,theLM386takesanaudioinputsignalandincreasesitspotentialanywherefrom20to200times.Thatamplificationiswhatsknownasthevoltagegain.Whatislm386IC?TheLM386isanintegratedcircuitcontainingalowvoltageaudiopoweramplifier.Itissuitableforbattery-powereddevicessuchasradios,guitaramplifiers,andhobbyelectronicsprojects.Howdoyoucalculatelm386gain?VoltageGainAnalysis:Withoutanyexternalcomponents,ithasagainofGv=2x15K/(150+1350)=20(26dB).Withacapacitor(orshortcutting)betweenpins1and8,ithasagainofGv=2x15K/150=200(46dB).WhichICisusedinaudioamplifier?TheICLM386isalow-poweraudioamplifier,anditutilizeslowpowersupplylikebatteriesinelectricalandelectroniccircuits.ThisICisavailableinthepackageofmini8-pinDIP.WhataresomeprojectsthatusetheLM386audioamplifiercircuit?LM386isanintegratedclassABampandisgoodforbeginnerssmallaudioamplifierapplicationsforexampleinaRFreceiver,smallStereosystem,cheaplowvoltageamplifieretcdrawbacksisthatitcannothandlemuchpowerandhencecreatesdistortionwhenyoucrankupthevolumetoomuch..SootherICsareusedinpractical.HowtomakeanLM386audioamplifiercircuit?

I.IntroductionThe74HC595isan8-bitserial-inorparallel-outshiftregisterwithastorageregisterand3-stateoutputs.74HC595withthecharacteristicsofhighspeed,lowpowerconsumptionandsimpleoperation,canbeeasilyusedinMCUinterfacetodriveLEDoperation.ThisarticleintroducesthecircuitdesignofLEDdisplaydrivedby74HC595.CatalogI.IntroductionII.BasicDescription2.1LEDDisplay2.274HC595III.CircuitDesign3.1HardwareCircuit3.2DisplayDriverIV.ConclusionFAQOrdering&QuantityII.BasicDescription2.1LEDDisplayA7SegmentLEDDisplay,alsoknownasLEDdisplay,hasbeenwidelyusedinvariousinstrumentsbecauseofitslowprice,lowpowerconsumptionandreliableperformance.TherearemanytypesofLEDdriversonthemarket,andmostofthemhavemultiplefunctions,butthepriceiscorrespondinglyhigher.Ifusedinasimplesystemwithlowcost,itisnotonlyawasteofresources,butalsoincreasesthecostofproducts.Using74HC595chiptodriveLEDhasvariousdisadvantages.Highspeed,lowpowerconsumption,unlimitednumberofLEDs.ItcancontrolboththecommoncathodeLEDdisplayandthecommonanodeLEDdisplay.Thecircuitdesignedwith74HC595isnotonlysimple,butalsolowinpowerconsumptionandstrongindrivingability.Itisalowcostandflexibledesignscheme.2.274HC595The74HC595isan8-bitserial-in/serialorparallel-outshiftregisterwithastorageregisterand3-stateoutputs.Boththeshiftandstorageregisterhaveseparateclocks.Thedevicefeaturesaserialinput(DS)andaserialoutput(Q7S)toenablecascadingandanasynchronousresetMRinput.ALOWonMRwillresettheshiftregister.DataisshiftedontheLOW-to-HIGHtransitionsoftheSHCPinput.ThedataintheshiftregisteristransferredtothestorageregisteronaLOW-to-HIGHtransitionoftheSTCPinput.Ifbothclocksareconnectedtogether,theshiftregisterwillalwaysbeoneclockpulseaheadofthestorageregister.Datainthestorageregisterappearsattheoutputwhenevertheoutputenableinput(OE)isLOW.AHIGHonOEcausestheoutputstoassumeahigh-impedanceOFF-state.OperationoftheOEinputdoesnotaffectthestateoftheregisters.Inputsincludeclampdiodes.ThisenablestheuseofcurrentlimitingresistorstointerfaceinputstovoltagesinexcessofVCC.Figure1.74HC595FunctionalDiagramFigure2.74HC595LogicSymbolIII.CircuitDesign3.1HardwareCircuitFigure3isadisplaypanelcircuitdesignedwithAT89C2051and74HC595interface.Figure3.CircuitofDisplayPanelTheP115,P116,andP117oftheP1portareusedtocontrolthedisplayoftheLED,andtheyareconnectedtotheSLCK,SCLKandSDApinsrespectively.Threedigitaltubesareusedtodisplaythevoltagevalue.Onthecircuitboard,LED3isonthefarleftandLED1isonthefarright.Whensendingdata,firstsendthedisplaycodeofLED3,andfinallysendthedisplaycodeofLED1.ThebrightnessoftheLEDiscontrolledbytheresistanceofPR1toPR3.2.2DisplayDriverUseDISP1,DISP2,andDISP3tostoredisplaydata.AftertheCPUinitializationiscomplete,calltheLRDISPsubroutinetocleartheregisterof74HC595.ThereisnoneedtocalltheclearsubroutinebeforecallingthedisplaysubroutineDISPLAY.Nowwritethetwosubroutinesasfollows.①CLRDISP:MOVR2,#24CLRBIT:CLRSCLKCLRCMOVSDA,CSETBSCLKDJNZR2,CLRBITRET②Display:CLRSLCKMOVR3 ,#3MOVR0,#DISP3DISP1:MOVA,@R0MOVR2 ,#8DISP2 :CLRSCLKRLCAMOVSDA,CSETBSCLKDJNZR2,DISP2DECR0DJNZR3,DISP1SETBSLCKRETIV.ConclusionItcanbeseenfromtheaboveexamplesthattherearenocomplicatedtechnicalproblemsinthedesignofhardwareandsoftwarewhen74HC595isusedtodesignLEDdrivercircuit.Inaddition,74HC595canbeusednotonlytodriveLEDdisplays,butalsotodrivelight-emittingdiodes.Each74HC595candrive8LEDssimultaneously.Thissolutionisidealwhenthevolumerequirementsoftheproductarenothighandwanttoreducethecost.FAQWhatis74HC595?74HC595isashiftregisterwhichworksonSerialINParallelOUTprotocol.Itreceivesdataseriallyfromthemicrocontrollerandthensendsoutthisdatathroughparallelpins.Wecanincreaseouroutputpinsby8usingthesinglechip.Whatisa74hc595n?8-bitShiftRegister74HC595NAshiftregisterisachipyoucanusetocontrolmanyoutputs(8here)atthesametimewhileonlyusingafewpins(3here)ofyourArduino.Howdoesashiftregisterwork?Shiftregistersholdthedataintheirmemorywhichismovedorshiftedtotheirrequiredpositionsoneachclockpulse.Eachclockpulseshiftsthecontentsoftheregisteronebitpositiontoeithertheleftortheright.How74HC595ShiftRegiesterworks?The595hastworegisters(whichcanbethoughtofasmemorycontainers),eachwithjust8bitsofdata.ThefirstoneiscalledtheShiftRegister.TheShiftRegisterliesdeepwithintheICcircuits,quietlyacceptinginput.Howdoesan8bitshiftregisterwork?TheSN74HC595Nisasimple8-bitshiftregisterIC.Simplyput,thisshiftregisterisadevicethatallowsadditionalinputsoroutputstobeaddedtoamicrocontrollerbyconvertingdatabetweenparallelandserialformats.YourchosenmicroprocessorisabletocommunicatewiththeTheSN74HC595Nusingserialinformationthengathersoroutputsinformationinaparallel(multi-pin)format.Essentiallyittakes8bitsfromtheserialinputandthenoutputsthemto8pins.DescriptionLED,asthefirstbasicfunctiontobecompletedinMCUlearning,playsaveryimportantroleinMCUlearners,whichalsocalledmagiclampbyMCUlearners.IbelievethateveryoneseesmostandthesimplestLEDcircuitisthefigureshownbelow.Asshowninthefigure,notonlythecircuitissimple,butalsoitsoperationisverysimple.GiveselectricalleveltoI/OcorrespondingtoeightLEDs,andthecorrespondingLEDcanbeonoroff.Figure1.simpleLEDcircuitCatalogDescription74HC595Drives8BitsLEDSFAQOrdering&Quantity74HC595Drives8BitsLEDSButnotallLEDcircuitsaresosimple.Somecircuitswilluse74HC595chiptodrive8LEDsordrivethe8-bitdigitaltubesegmentcode,asshowninthefigurebelow.Figure2.74HC595drives8LEDsWhyisasimplecircuitsocomplicated?Thereasonisobvious.BeforetheeightLEDneedeightI/O,nowonlythreeI/OcandriveeightLED.Letsbrieflyintroduce74CH595anduseitsuccessfullytodriveeightLEDlights.The74HC595isan8-bitserial-inorparallel-outshiftregisterwithastorageregisterand3-stateoutputs.Boththeshiftandstorageregisterhaveseparateclocks.Thedevicefeaturesaserialinput(DS)andaserialoutput(Q7S)toenablecascadingandanasynchronousresetMRinput.SIisitsserialdatainput.Q0toQ7aredataoutput.SCK,istheclockfortheshiftregister.The595isclock-drivenontherisingedge.Thismeansthatinordertoshiftbitsintotheshiftregister,theclockmustbeHIGH.Andbitsaretransferredinontherisingedgeoftheclock.RCK,isaveryimportantpin.WhendrivenHIGH,thecontentsofShiftRegisterarecopiedintotheStorage/LatchRegister;whichultimatelyshowsupattheoutput.Sothelatchpincanbeseenaslikethefinalstepintheprocesstoseeingourresultsattheoutput.SQHisserialdataoutput.Whatwewanttoachievenowistomovethe8-bitsdataofSIinto74HC595onebyoneundertheactionofSCKandRCKandpresenttheminparallelonQ0-Q7.Figure3.How74HC595ShiftRegisterworksWheneverweapplyaclockpulsetoa595,thebitsintheShiftRegistermoveonesteptotheleft.Belowisitscode.FAQWhatis74HC595?74HC595isashiftregisterwhichworksonSerialINParallelOUTprotocol.Itreceivesdataseriallyfromthemicrocontrollerandthensendsoutthisdatathroughparallelpins.Wecanincreaseouroutputpinsby8usingthesinglechip.Whatisa74hc595n?8-bitShiftRegister74HC595NAshiftregisterisachipyoucanusetocontrolmanyoutputs(8here)atthesametimewhileonlyusingafewpins(3here)ofyourArduino.Howdoesashiftregisterwork?Shiftregistersholdthedataintheirmemorywhichismovedorshiftedtotheirrequiredpositionsoneachclockpulse.Eachclockpulseshiftsthecontentsoftheregisteronebitpositiontoeithertheleftortheright.How74HC595ShiftRegiesterworks?The595hastworegisters(whichcanbethoughtofasmemorycontainers),eachwithjust8bitsofdata.ThefirstoneiscalledtheShiftRegister.TheShiftRegisterliesdeepwithintheICcircuits,quietlyacceptinginput.Howdoesan8bitshiftregisterwork?TheSN74HC595Nisasimple8-bitshiftregisterIC.Simplyput,thisshiftregisterisadevicethatallowsadditionalinputsoroutputstobeaddedtoamicrocontrollerbyconvertingdatabetweenparallelandserialformats.YourchosenmicroprocessorisabletocommunicatewiththeTheSN74HC595Nusingserialinformationthengathersoroutputsinformationinaparallel(multi-pin)format.Essentiallyittakes8bitsfromtheserialinputandthenoutputsthemto8pins.Whatisadigitaltube?Lightemittingdiodeconnectstheanodetogetherandthenconnectedtothepowerofpositiveiscalledcommonanodedigitaltube,lightemittingdiodeconnectedtothecathodeandthenconnectedtothepowerofthecathodeiscalledcommoncathodedigitaltube.Whatisthedifferencebetweenshiftregisterandcounter?Inashiftregister,theinputofelementNistheoutputofelementN-1,andallelementsusethesameclock.Inacounter,theinputofelementNistheinverseofitsoutput,andtheclockofelementN+1istheoutputofelementN.

RNR60C5423BSM76_Datasheet PDF

IDescriptionDoyouknowwhattheDigitalTubeDisplayneeds?Thedisplayofthedigitaltuberequiresadigitaltubeandacontrolcircuitofmultipledigitaltubes.Takethesingle-chipmicrocomputercontrolcircuitofan8-bitdigitaltubeasanexample.Thesingle-chipmicrocomputerneedstoprovidean8-bitsegmentcodeandan8-bitcode.Thus,weusuallychoosetwoofthefourparallelI/Oportsinthe51single-chipmicrocomputertoprovidesegmentcodesandbitcodesrespectively.Althoughthiscircuithardwareconnectionandsoftwareprogrammingarerelativelysimple,therearealsoproblems.Thatis:ToomanyI/Oportsareoccupied,whichaffectstheoveralluseofthemicrocontroller,andisnotconducivetotheaccessofotherdevices.Howtosolvethisproblem?Wecanuseatypeofshiftregisterforauxiliarycontrol.Here,thisblogusesthe74HC595chip.Figure1.74HC595CatalogIDescriptionIIIntroductionto74HC595III74HC595DisplayControlofMulti-digitDigitalTube3.1HardwareConnection3.2SoftwareProgramming3.3SimulationDebuggingIVConclusionFAQOrdering&QuantityIIIntroductionto74HC59574HC595isaCMOSshiftregisterwithopen-drainoutput.Theoutputportisacontrollablethree-stateoutput.Itcanalsocontrolthenext-levelcascadedchipserially.Itsstructureisusuallya16-pinDIPpackageorSOpackage.The74HC595pinoutisshowninFigure2,andthecorrespondingpinfunctionsareshowninTable1.Figure2.74HC595PinoutThemainfeaturesof74HC595are:8-bitserialinput/8-bitparallelorserialoutput;Three-stateoutputregister(three-stateoutput:agatecircuitwiththreeoutputstatesofhighlevel,lowlevelandhighimpedance);High-speedlow-powerconsumption,high-speedshiftclockfrequencyFmax25MHz.Table1.74HC595PinFunctionPinNumberPinNamePinFunction15,1~7Q0~Q7Paralleltri-stateoutputpin8GNDPowerground9Q7Serialdataoutputpin10/MRClearendofshiftregister(activelow)11SH_CPSerialdatainputclockline12ST_CPOutputmemorylatchclockline13/OEOutputenable(activelow)14DSSerialdatainputline16VCCPowerendIII74HC595DisplayControlofMulti-digitDigitalTubeHere,thisblogtakesthesingle-chipmicrocomputercontrolmulti-digitdigitaltubeasanexample.Tousethechipcorrectly,youmustfirstcorrectlyunderstandthetimingdiagramortruthtableofthechip.Thetruthtableof74HC595isshowninTable2.InputPinOutputPinDSSHCP/MRSTCP/OEHQ0~Q7outputhighimpedanceLQ0~Q7outputeffectivevalueLClearshiftregisterLRisingEdgeHShiftregisterstorelowlevelHRisingEdgeHShiftregisterstorehighlevelFallingEdgeHShiftregisterstateretentionRisingEdgeStatevalueinoutputshiftregisterFallingEdgeOutputmemorystateretentionItcanbefoundthattheserialdataisconnectedtotheDSpin,butitisonlyinputtotheshiftregisterwhenSH_CPisarisingedge,andentersthestorageregisterwhenST_CPisarisingedge.Ifthetwoclocksareconnectedtogether,theshiftregisterisalwaysonepulseearlierthanthestorageregister.Theshiftregisterhasaserialshiftinput(Ds),aserialoutput(Q7),andanasynchronouslow-levelreset.Thestorageregisterhasaparallel8-bit,three-statebusoutput.WhenOEisenabled(lowlevel),thedataofthestorageregisterisoutputtothebus.3.1HardwareConnectionSincethe8-bitdigitaltubeneedstoprovideatotalof16bitsofsegmentcodeandbitcodeatthesametime,itcannotberealizedbyusingone74HC595.Tosolvethisproblem,weusetwo595chipstocascadeseriallytoprovidean8-bitsegmentcode(providedbyU2)andan8-bitcode(providedbyU3).ThesimulationhardwarecircuitisshowninFigure3.Theinputsignalof595isconnectedtothethreeI/OportsofP2.0~P2.2respectively.Amongthem,P2.0providesserialinputsignals,P2.1andP2.2provideoutputandinputclocksignalsrespectively.Figure3.SimulationHardwareCircuitDiagram3.2SoftwareProgrammingHere,weuse2piecesof74HC595chipsforserialcascading.Therefore,youmustpayattentiontothesequenceofserialdataoutputwhenprogramming.Theusualpracticeisasfollows:First,writethedata(iebitcode)ofthe74HC595chipatthenextlevel;Then,writethedata(iesegmentcode)ofthefirst-level74HC595chip;Finally,releasetheparalleloutputpinstogetheratonce.Thesampleprogramisasfollows(partial):voidOneLed_Out(uchari,ucharLocation){ucharj;OutByte=Location;for(j=1;j=8;j++){DS=Bit_Out;SH_CP=0;SH_CP=1;SH_CP=0;OutByte=OutByte1;}OutByte=~Segment[i];for(j=1;j=8;j++){DS=Bit_Out;SH_CP=0;SH_CP=1;SH_CP=0;OutByte=OutByte1;}ST_CP=0;ST_CP=1;ST_CP=0;}3.3SimulationDebuggingWecandrawthehardwarecircuitdiagramontheProteus7platform,andthenwritethesoftwareprogramontheKeil4.0platformandcompileanddebugit.Then,loadthegeneratedHEXfileintothesimulationchipandrunthesimulation.Ifallgoeswell,theresultswillbedisplayedcorrectly.Accordingtothedisplayrequirements,itcanrealize8-bitdigitaltubeshiftdisplayor8-bitdigitaltubesimultaneousdisplay.ThesimulationresultsareshowninFigures4and5.Figure4.ShiftDisplayof8-bitDigitalTubeFigure5.SimultaneousDisplayof8-bitDigitalTubesIVConclusionThetestresultsofthisblogshowthattherearemanyadvantagestothedisplaycontrolofmulti-digitdigitaltubesthroughthecascadeof74HC595chips.Thesebenefitsaremainlyreflectedinthefollowingaspects:Itcangreatlyreducethedisplaycontrolofthesingle-chipdigitaltube;ItcangreatlyreducetheoccupancyoftheMCUI/Oportline;Thecircuitissimpleandeasytoprogram.Themethodintroducedinthisblog,whetheritistoconductsimulationteachingonacomputer,ortobuildactualhardwarecircuits.Ingeneral,Thecurrent74HC595chipiscost-effective,andthecostofbuildingacircuitislow,makingitverysuitableforgeneraluse.FAQWhatis74HC595?74HC595isashiftregisterwhichworksonSerialINParallelOUTprotocol.Itreceivesdataseriallyfromthemicrocontrollerandthensendsoutthisdatathroughparallelpins.Wecanincreaseouroutputpinsby8usingthesinglechip.Whatisa74hc595n?8-bitShiftRegister74HC595NAshiftregisterisachipyoucanusetocontrolmanyoutputs(8here)atthesametimewhileonlyusingafewpins(3here)ofyourArduino.Howdoesashiftregisterwork?Shiftregistersholdthedataintheirmemorywhichismovedorshiftedtotheirrequiredpositionsoneachclockpulse.Eachclockpulseshiftsthecontentsoftheregisteronebitpositiontoeithertheleftortheright.How74HC595ShiftRegiesterworks?The595hastworegisters(whichcanbethoughtofasmemorycontainers),eachwithjust8bitsofdata.ThefirstoneiscalledtheShiftRegister.TheShiftRegisterliesdeepwithintheICcircuits,quietlyacceptinginput.Howdoesan8bitshiftregisterwork?TheSN74HC595Nisasimple8-bitshiftregisterIC.Simplyput,thisshiftregisterisadevicethatallowsadditionalinputsoroutputstobeaddedtoamicrocontrollerbyconvertingdatabetweenparallelandserialformats.YourchosenmicroprocessorisabletocommunicatewiththeTheSN74HC595Nusingserialinformationthengathersoroutputsinformationinaparallel(multi-pin)format.Essentiallyittakes8bitsfromtheserialinputandthenoutputsthemto8pins.Whatisadigitaltube?Lightemittingdiodeconnectstheanodetogetherandthenconnectedtothepowerofpositiveiscalledcommonanodedigitaltube,lightemittingdiodeconnectedtothecathodeandthenconnectedtothepowerofthecathodeiscalledcommoncathodedigitaltube.Whatisthedifferencebetweenshiftregisterandcounter?Inashiftregister,theinputofelementNistheoutputofelementN-1,andallelementsusethesameclock.Inacounter,theinputofelementNistheinverseofitsoutput,andtheclockofelementN+1istheoutputofelementN.IDescriptionTheinstrumentationamplifiercircuithasthefollowingfeatures:HighInputImpedance;HighCommon-modeRejectionRatio;LowDrift;...Theabovefeaturesmakeitwidelyusedinfieldsofsmallsignalamplificationofsensoroutput.Thisblogwillintroduce4implementationoptionsofinstrumentationamplifiercircuits.These4optionsaredesignedbasedondifferentelectroniccomponents.Andtheyarealsoonthebasisofexplainingthecircuitstructureandprincipleoftheinstrumentamplifier.Theelectroniccomponentsdiscussedinthisbloginclude:LM741,OP07,LM324,AD620.Wewillsummarizefeaturesofthe4circuitthroughtesting,analysisandcomparison.Ibelievethisblogcanprovideacertainreferenceforcircuitdesignbeginners.WhatAreInstrumentationAmpilfiers?CatalogIDescriptionIIIntroduction2.1InstrumentationAmplifierOverview2.2InstrumentationAmplifierStuctureandPrincipleIIIInstrumentationAmplifierCircuitDesign3.1LM741CircuitOption3.2OP07CircuitOption3.3LM324CircuitOption3.4AD620CircuitOptionIVPerformanceTestandAnalysisFAQOrdering&QuantityIIIntroduction2.1InstrumentationAmplifierOverviewThesignalsinputbysmartmetersthroughsensorsgenerallyhavethecharacteristicsofsmallsignals:Thesignalamplitudeisverysmall(millivoltorevenmicrovoltmagnitude);Oftenaccompaniedbyloudnoise.Forsuchsignals,thefirststepofcircuitprocessingisusuallytoamplifysmallsignalswithaninstrumentationamplifier.Themainpurposeofamplificationisnottogain,buttoimprovethesignal-to-noiseratioofthecircuit.Atthesametime,fortheinstrumentationamplifiercircuit,thesmallertheinputsignalthatcanberesolved,thebetter;thewiderthedynamicrange,thebetter.Therefore,theperformanceoftheinstrumentationamplifiercircuitdirectlyaffectstherangeoftheinputsignalthatthesmartinstrumentcandetect.2.2InstrumentationAmplifierStuctureandPrincipleThetypicalstructureoftheinstrumentamplifiercircuitisshownasinFig.1.Itismainlycomposedoftwo-stagedifferentialamplifiercircuit.Figure1.StructureofInstrumentationAmplifierAmongthem,theoperationalamplifierA1,A2arein-phasedifferentialinputmodes.Non-invertinginputcangreatlyincreasetheinputimpedanceofthecircuit.Atthesametime,itcanalsoreducetheattenuationofweakinputsignalsbythecircuit;Differentialinputcanmakethecircuitonlyamplifythedifferentialmodesignal,andonlyfollowthecommonmodeinputsignal.Inthisway,theratiooftheamplitudeofthedifferentialmodesignaltothecommonmodesignal(ie,thecommonmoderejectionratioCMRR)senttothesubsequentstageisimproved.Inthisway,inthedifferentialamplifiercircuitcomposedofoperationalamplifierA3asthecorecomponent,undertheconditionthattheCMRRrequirementsremainunchanged,theaccuracymatchingrequirementsforresistorsR3andR4,RfandR5canbesignificantlyreduced.Asaresult,theinstrumentationamplifiercircuithasbettercommonmoderejectioncapabilitythanasimpledifferentialamplifiercircuit.UndertheconditionsofR1=R2,R3=R4,Rf=R5,thegainofthecircuitinFigure1is:G=(1+2R1/Rg)(Rf/R3)ItcanbeseenfromtheformulathattheadjustmentofthecircuitgaincanbeachievedbychangingtheRgresistance.IIIInstrumentationAmplifierCircuitDesignAtpresent,theimplementationmethodsofinstrumentationamplifiercircuitsaremainlydividedintotwocategories:Thefirstcategoryiscomposedofdiscretecomponents;Thesecondcategoryisdirectlyimplementedbyasingleintegratedchip.Intheblog,withsingleopampLM741andOP07,integratedfouropampLM324andmonolithicintegratedchipAD620asthemainelectroniccomponents,4kindsofinstrumentationamplifiercircuitoptionsaredesigned.3.1LM741CircuitOptionConsistsofthreegeneral-purposeoperationalamplifiersLM741toformathreeoperationalamplifierinstrumentamplifiercircuitform.Andsupplementedbyrelatedresistorperipheralcircuits.Atthesametime,addthebridgesignalinputcircuitofthenon-invertinginputterminalsofA1andA2,asshowninFigure2.Figure2.SingleOpAmpInstrumentationAmplifierA1~A3inFigure2canbereplacedwithLM741respectively.Theworkingprincipleofthecircuitisexactlythesameasthatofatypicalinstrumentationamplifiercircuit.3.2OP07CircuitOptionComposedof3precisionoperationalamplifiersOP07,thecircuitstructureandprinciplearethesameasinFig.2(3OP07sareusedtoreplaceA1~A3inFig.2respectively).3.3LM324CircuitOptionTakeafouroperationalamplifierintegratedcircuitLM324asthemaincomponent,asshowninFigure3.Itscharacteristicistointegrate4functionallyindependentoperationalamplifiersintothesameintegratedchip.WhataretheadvantagesofusingLM324?Thatis,itispossibletogreatlyreducethedifferenceindeviceperformanceofeachopampduetodifferentmanufacturingprocesses.Inaddition,theuseofaunifiedpowersupplyisconducivetothereductionofpowersupplynoiseandtheimprovementofcircuitperformanceindicators.Andthebasicworkingprincipleofthecircuitremainsunchanged.Figure3.LM324InstrumentationAmplifier3.4AD620CircuitOptionThecircuitconsistsofamonolithicintegratedchipAD620asthemainelectroniccomponents,asshowninFigure4.Itischaracterizedbyasimplecircuitstructure:anAD620,againsettingresistorRg,andaworkingpowersupply.Therefore,thedesignefficiencyisveryhigh.ThecircuitgaincalculationformulainFig.4is:G=49.4K/Rg+1.Figure4.AD620InstrumentationAmplifierIVPerformanceTestandAnalysisThefouroptionsoftheinstrumentationamplifiercircuitalladopttheformofabridgecircuitcomposedof4resistors,whichchangesthedouble-endeddifferentialinputintoasingle-endedsignalsourceinput.Theperformancetestismainlytocarryoutsimulationandactualcircuitperformancetestfromthefollowingaspects:1.ThemaximuminputofthesignalsourceVs;2.VsminimuminputofsignalsourceVs;3.Themaximumgainofthecircuit;4.Commonmoderejectionratio.ThetestdataareshowninTable1andTable2.Amongthem,themaximum(small)inputofVsreferstothemaximum(small)inputofthesignalsourcewhenthecircuitoutputisnotdistortedundergiventestconditions.Themaximumgainreferstothemaximumgainvalueofthecircuitthatcanbeachievedwhentheoutputisnotdistortedunderthegiventestconditions.ThecommonmoderejectionratioiscalculatedbytheformulaKCMRR=20|g|AVd/AVC|(dB).Note:fisthefrequencyofVsinputsignal;Thevoltagemeasurementdatainthetableareallexpressedbypeak-to-peakvalue;Duetothesimulationdevice,thesimulationofoption3withMultisimfailedintheexperiment,and-inTable1indicatesthefailuredata;Options1to4inthetablerespectivelyrepresenttheinstrumentationamplifiercircuitcomposedofLM741,OP07,LM324andAD620respectively.FromthemeasureddatainTable2,wecanseefromit:Foroption2,ithasthebestperformanceintermsofsignalinputrange(thatis,themaximumandminimuminputofVs),circuitgain,andcommon-moderejectionratio.Intermsofcomponentprice,itisalittlehigherthanthecostoftheLM741option1andtheLM324option3,butitismuchcheaperthantheAD620option4.Therefore,amongthefouroptions,option2ofOP07hasthehighestcostperformance.Foroption4,inadditiontoitsrelativelysmallmaximumgain,itsotherperformanceissecondonlytooption2.option4hastheadvantagesofsimplecircuit,superiorperformance,andsavingdesignspace.However,thehighcostisitsbiggestdisadvantage.Foroption1andoption3,thereislittledifferenceintheirperformance.option3isslightlybetterthanoption1,andtheyalsohaveabsolutepriceadvantages,buttheirperformanceisnotasgoodasoption2andoption4.Basedontheaboveanalysis,option2andoption4aresuitableforoccasionswithhigherperformancerequirementsforinstrumentamplifiercircuits.Amongthem:Option2ofOP07isthemostcost-effectiveOption4ofAD620issimpleandefficient,butthecostishigh.Option1ofLM741andOption3ofLM324aresuitableforoccasionswhereperformancerequirementsarenothighandcostsavingsareneeded.Accordingtospecificcircuitdesignrequirements,differentoptionsareselectedtoachieveoptimalresourceutilization.Figure5.InstrumentationAmplifierICInaddition,afterthecircuitdesignplanisdetermined,thefollowingaspectsshouldbepaidattentiontointhespecificcircuitdesignprocess:1.Payattentiontotheselectionofkeycomponents.Forexample,forthecircuitshowninFigure2,thereareafewthingstopayattentionto:MakethecharacteristicsofopampA1andA2asconsistentaspossible;Whenselectingresistors,resistorswithalowtemperaturecoefficientshouldbeusedtoobtainthelowestpossibledrift;TheselectionofR3,R4,R5andR6shouldmatchasmuchaspossible.2.Payattentiontoaddingvariousanti-interferencemeasuresinthecircuit.suchas:Thepowersupplydecouplingcapacitorshouldbeaddedatthelead-inendofthepowersupply;RClow-passfilteringshouldbeaddedtothesignalinputterminalorhigh-frequencynoisecancelingcapacitorsshouldbeaddedtothefeedbackloopoftheoperationalamplifierA1andA2;ThePCBdesignshouldbecarefullylaidoutandroutedreasonably,andgroundwiresshouldbehandledcorrectly.FAQWhatislm324?LM324isaQuadop-ampICintegratedwithfourop-ampspoweredbyacommonpowersupply.Thedifferentialinputvoltagerangecanbeequaltothatofpowersupplyvoltage....Generally,op-ampscanperformmathematicaloperations.Whichisthedifferencebetweenlm324andlm339?TheLM324hasacomplementaryoutputwhiletheLM339isopencollector.Inthecomplementaryoutput,currentcanflowineitherdirectionasrequired(eithersourceorsink)whiletheopencollectoroutputcanonlysinkcurrent.Whatisopampusefor?OperationalamplifiersarelineardevicesthathaveallthepropertiesrequiredfornearlyidealDCamplificationandarethereforeusedextensivelyinsignalconditioning,filteringortoperformmathematicaloperationssuchasadd,subtract,integrationanddifferentiation.Howdoesanopampwork?Whatislm324usedfor?LM324ICApplicationsTheapplicationsofICLM324includethefollowing.ByusingthisIC,theconventionalop-ampapplicationscanbeimplementedverysimply.ThisICcanbeusedasoscillators,rectifiers,amplifiers,comparatorsetc.I.IntroductionAsweallknow,theionnitridingprocessrequiresrelativelyhighcontrolofthepressureinsidethefurnace,sothispaperdesignsagasflowcontrollerbasedontheL298NchipdrivenDCmotorcontrol,whichcanbeusedtocontrolthegasflowofthereactor.Soletsfirstunderstandtheionnitridingtheory.CatalogI.IntroductionII.IonNitridingTheoryIII.SystemFlowandPressureMeasurementandControlBlockDiagramIV.L298NChipIntroductionV.ControllerPrincipleVI.ConclusionFAQOrdering&QuantityII.IonNitridingTheoryNitridingisachemicalheattreatmentmethodtostrengthenthemetalsurface.Itistoplacemetalpartsinanactivenitrogenmedium,andatacertaintemperatureandholdingtime,thenitrogenelementcanpenetrateintothemetalsurface,therebychangingthechemicalcompositionofthemetallayertomakeithavehighwearresistance,fatiguestrength,corrosionresistanceandburnresistance,etc.,soitiswidelyusedinindustry.Ionnitridingiscarriedoutinalow-temperatureplasma.Thelow-pressuregasisionizedundertheactionofanelectricfieldtoproducehigh-energyionsandhigh-energyneutralatoms.Thesehigh-energyparticlescanimprovethestructureoftheinfiltrationlayer,promotethechemicalreactionprocess,andacceleratethenitridinglayerformation.Ionnitridingiscarriedoutinglowdischarge.Intheprocessofionnitriding,thepressurecontrolaccuracyofthefurnaceisrelativelyhigh,andthecontroldeviationreachesseveraltensofPa.AccordingtoPaschensLaw:Amongthem:Pisthegaspressure;Disthedistancebetweenparallelplateelectrodes;Visthecathodesecondaryelectronemissioncoefficient;BisStolevsconstant;Aisaconstant.Takingthederivativeofformula(1),thebreakdownvoltageexpression(2)canbeobtained:Itcanbeseenfromformula(2)thatthebreakdownvoltageVisrelatedtothegaspressureandd,andingeneralexperiments,disfixed,soionnitridingisextremelyimportantforpressurecontrol.III.SystemFlowandPressureMeasurementandControlBlockDiagramTheflowmetercontrolsthegasflowattheinlet.Whentheinletandexhaustflowsarebalanced,thefurnacepressureremainsstable.Duetotheinternalinfluenceoffurnacegasleakageandotherinterferencefactors,theinternalpressureofthefurnacefluctuatesupanddown,andthesystemdeviatesfromtheequilibriumstate,whichaffectstheplasmaprocessinseverecases.WeuseanordinaryDCmotortodrivetheDCmotorthroughtheL298N,andthemotordrivestheconetorotatethroughthereductionlever.Whentheconeisscrewedin,thegaspumpedoutperunittimeisreduced;whenitisscrewedout,thegaspumpedoutincreases,sothatthepressureinsidethefurnaceisstabilizedattherequiredvalue.Thechangeoffurnacepressureismeasuredbythepressuresensorandpassedthroughthetransmitter,whichsendsthegasflowcontrollertothefeedbackvoltage.Theelectricvacuumbutterflyvalveusedforthesuctionportisexpensive,asshowninFigure1.Figure1BlockdiagramofsystemflowandpressuremeasurementandcontrolIV.L298NChipIntroductionL298NcanacceptstandardTTLlogiclevelsignalVSS,andVSScanbeconnectedto4.5~7Vvoltage.4pinVSisconnectedtothepowersupplyvoltage,andtheVSvoltagerangeVIHis+2.5~46V.Theoutputcurrentcanreach2.5A,whichcandriveinductiveloads.Theemittersofpin1andpin15areseparatelyledouttoconnectthecurrentsamplingresistortoformacurrentsensingsignal.L298candrivetwomotors,OUT1,OUT2andOUT3,OUT4canbeconnectedtoeachmotor,thisexperimentaldevicewechoosetodriveonemotor.Pins5,7,10and12areconnectedtotheinputcontrolleveltocontroltheforwardandreverserotationofthemotor.EnAandEnBareconnectedtothecontrolpotentialenergyendtocontrolthestallingofthemotor.Figure2istheL298Nfunctionallogicdiagram,Table1istheL298Ninternalfuntionalmodule.Figure2L298NfunctionallogicdiagramEnAIn1In2OperativeCondition0Stop110Rotatingforward101Inversion111Brake100StopTable1L298NinternalfunctionalmoduleThefunctionalmoduleofIn3andIn4isthesameasTable1.ItcanbeseenfromTable1thatwhenEnAislowlevel,theinputlevelhasaneffectonmotorcontrol.WhenEnAishighlevel,whenEnAishigh,theinputlevelisonehighandonelow,andthemotorrotatesforwardorreverse.Iftheyarebothlowlevel,themotorwillstop,andiftheyarebothhighlevel,themotorwillbrake.V.ControllerPrincipleFigure3istheschematicdiagramofthecontroller,composedof3dashedblockdiagrams:Figure3TheschematicdiagramofthecontrollerThefollowingarethefunctionsofthe3dashedblockdiagrams:(1)Thedashedblockdiagram1controlstheforwardandreverserotationofthemotor,U1AandU2Aarecomparators,andVIcomesfromthevoltageofthefurnacepressuresensor.WhenVIVRBF1,U1Aoutputshighlevel,U2Aoutputhighlevelturnsintolowlevelthroughinverter,andthemotorrotatesforward.Similarly,whenVIVRBF1,themotorreverses.Theforwardandreverserotationofthemotorcancontroltheflowofgasextractedbytheairextractor,therebychangingthepressureinsidethefurnace.(2)Inthedashedblockdiagram2,twocomparatorsU3AandU4Aformadual-limitcomparator.WhenVBVIVA,itoutputslowlevel,andwhenVIVA,VIVB,itoutputshighlevel.VA,VBaretheupperandlowerlimitsofthevoltageconvertedbythefurnacepressuretransducer,thatis,thecontrolrangeofthereactionfurnacepressure.Accordingtoprocessrequirements,wecanspecifythevaluesofVAandVBbyourselves,aslongasthefurnacepressureiswithintherangedeterminedbyVAandVB,themotorstops(notethatVB<VRBF1<VA,ifitisnotinthisrange,thesystemisunstable).(3)Thedashedblockdiagram3isalongdelaycircuit.U5Aisacomparator,Rs1isthesamplingresistor,VRBF2isthemotorovercurrentvoltage.ThevoltageonRs1isgreaterthanVREF2,themotorisovercurrent,andU5Aoutputslowlevel.Itcanbeseenfromtheabovethatblock1controlstheforwardandreverserotationofthemotor,andblock2controlsthesizeoftherippleofthefurnacepressure.Whenthefurnacepressureistoosmallortoolarge,themotorturnstoafixedpositionatbothendstostop,accordingtothesteady-stateoperatingequationoftheDCmotor:Amongthem:Фisthemagneticfluxofeachpoleofthemotor;Ceistheelectromotiveforceconstant;Nisthenumberofmotorrevolutions;Iaisthearmaturecurrent;Raisthearmatureloopresistance.WhenthenumberofrevolutionsofthemotorNis0,thecurrentofthemotorincreasessharply,andthemotorwillburnoutifthetimeistoolong.Butwhenthemotorstarts,thecurrentinthecoilinthemotoralsoincreasessharply,sowemustseparatethesetwostates.Thelongdelaycircuitcandistinguishthesetwostates.Theworkingprincipleofthelong-delaycircuit:WhentheRs1overcurrentU5Ageneratesanegativepulseandisdifferentiated,thepulsetriggerspin2of555,thecircuitisset,andpin3outputshighlevel.Becausethedischargeterminal7pinisopen,C1,R5andU6Aformedasanintegration,thenstartworking,thechargingvoltageonthecapacitorC1riseslinearly,andtheintegrationconstantofthedelayoperationalamplifieris100R5C1.WhenthechargingvoltageonC1,thatis,thevoltageonpin6exceeds2/3VCC,the555circuitresetsandoutputsalowlevel.Themotorgenerallystart-upinlessthan0.8s,andtheC1chargingtimeisgenerally0.8~1s.TheoutputlevelofU5AisORedwiththeoutputlevelofpin3of555viaU7.IftheoutputlowlevelofU5AislongerthanthechargingtimeofC1,U7outputslowlevelafterC1ischarged.TheANDgateU8inputstothe6pinENAterminalofL298N.Themotorstops.IftheoutputlevelofU5AislessthanthechargingtimeofC1,pin6willnotactandthemotorwillstartnormally.Thelongdelaycircuitabsorbsthemotorstart-upovercurrentvoltagewaveform,sothatthemotorstartsnormally.VI.ConclusionThisarticlesummarizesthedesignschemeforthepressurecontrolofionnitridingbasedontheL298Nchip.Ithasbeenprovedthattheuseofthiscontrollertocontrolthegasflowcanreduceproductioncosts,increasethesystemcostperformance,andimprovethecontroldynamicperformanceandstabilityoftheentiresystemcontrol.FAQWhatisl298n?ThisL298NMotorDriverModuleisahighpowermotordrivermodulefordrivingDCandStepperMotors.ThismoduleconsistsofanL298motordriverICanda78M055Vregulator.L298NModulecancontrolupto4DCmotors,or2DCmotorswithdirectionalandspeedcontrol.Whatistheuseofl298n?TheL298NisadualH-BridgemotordriverwhichallowsspeedanddirectioncontroloftwoDCmotorsatthesametime.ThemodulecandriveDCmotorsthathavevoltagesbetween5and35V,withapeakcurrentupto2A.Howdoesl298ncontrolDCmotorspeed?1.IfyousendaHIGHsignaltotheenable1pin,motorAisreadytobecontrolledandatthemaximumspeed;2.IfyousendaLOWsignaltotheenable1pin,motorAturnsoff;3.IfyousendaPWMsignal,youcancontrolthespeedofthemotor.Themotorspeedisproportionaltothedutycycle.Whatisl298nmotordrivermodule?ThisL298NMotorDriverModuleisahighpowermotordrivermodulefordrivingDCandStepperMotors.ThismoduleconsistsofanL298motordriverICanda78M055Vregulator.L298NModulecancontrolupto4DCmotors,or2DCmotorswithdirectionalandspeedcontrol.Howdoesl298nmotordriverwork?TheL298NisadualH-BridgemotordriverwhichallowsspeedanddirectioncontroloftwoDCmotorsatthesametime.ThemodulecandriveDCmotorsthathavevoltagesbetween5and35V,withapeakcurrentupto2A.Howdoiuseal298motordriverwithArduino?Startbyconnectingpowersupplytothemotors.InourexperimentweareusingDCGearboxMotors(alsoknownasTTmotors)thatareusuallyfoundintwo-wheel-driverobots.Theyareratedfor3to12V.So,wewillconnectexternal12VpowersupplytotheVCCterminal.WhatisthefunctionofHbridge?AnH-bridgeisanelectroniccircuitthatswitchesthepolarityofavoltageappliedtoaload.ThesecircuitsareoftenusedinroboticsandotherapplicationstoallowDCmotorstorunforwardsorbackwards.Whatisthedifferencebetweenl293dandl298n?L293isquadruplehalf-HdriverwhileL298isdualfull-Hdriver,i.e,inL293allfourinput-outputlinesareindependentwhileinL298,ahalfHdrivercannotbeusedindependently,onlyfullHdriverhastobeused....Hence,heatsinkisprovidedinL298.

RNR60C5423BSM76_Datasheet PDF

I.IntroductionDCmotorsarewidelyusedinvariousfieldsduetotheirgoodspeedregulationperformance,largestartingtorqueandstrongoverloadcapacity.Inrecentyears,thestructureandcontrolmethodsofDCmotorshaveundergonegreatchanges.Withcomputersenteringthecontrolfieldandthecontinuousemergenceofnewpowerelectronicpowercomponents,PWM(pulsewidthmodulation)speedregulationhasbecomeanewwayofDCmotorspeedregulation.Andwiththeadvantagesofhighswitchingfrequency,stablelow-speedoperation,excellentdynamicperformance,andhighefficiency,itiswidelyusedinDCmotorspeedregulation.Therefore,thispaperproposesthedesignofaDCmotorPWMcontrolsystembasedon80C196KCandL298N.CatalogI.IntroductionII.PrincipleofPWMSpeedControlSystemIII.ControlSystemHardwareDesign3.1IntroductiontoPowerIntegratedCircuitL298N3.2DCMotorControlSystemHardwareCircuit3.3Anti-interferenceandElectromagneticCompatibilityDesignIV.ControlSystemSoftwareRealizationV.ConclusionFAQOrdering&QuantityII.PrincipleofPWMSpeedControlSystemPWM,orpulsewidthmodulation,referstotheuseoftheswitchingcharacteristicsofhigh-powertransistorstomodulateafixedvoltageDCpowersupply,whichisturnedonandoffatafixedfrequency,andthelengthoftheonandofftimeinacycleischangedasneeded.BychangingthedutycycleofthevoltageonthearmatureoftheDCservomotor,theaveragevoltageischangedtocontrolthespeedofthemotor.Therefore,itisoftencalledaswitchdrivedevice.TheschematicdiagramofPWMcontrolisshowninFigure1.Figure1PWMcontrolschematicdiagramThereareusuallytwowaystochangethedutycycle:PWMandPFM(pulsefrequencymodulation).PWMisbychangingthewidthoftheon-pulse,whichiscommonlyreferredtoasthefixedfrequencywidthmodulationmethod.PFMmeansthattheon-pulsewidthisconstantandthedutycycleischangedbychangingtheswitchingfrequency.Becausewhenitencountersmechanicalresonanceataparticularfrequency,itoftenresultsinsystemvibrationandhowling.Therefore,inthecontrolofDCmotors,thePWMcontrolmethodismainlyused.III.ControlSystemHardwareDesignTheDCmotorspeedcontrolsystembasedon80C196KCandL298Niscomposedofthesmallestsingle-chipmicrocomputersystem,R/Dconverter,PWMpoweramplifiercircuit,A/DandD/Aconversioncircuit,andreceivingcommandinterfacecircuit.Theminimumsystemofthesingle-chipmicrocomputeradoptsthe16-bitsingle-chip80C196KCexternalexpansioninterfacecircuit,whichismainlyusedtorealizethefunctionsofdataacquisitionandPWMsignalgeneration.TheblockdiagramofthespeedcontrolsystemisshowninFigure2.Figure2BlockdiagramofPWMspeedcontrolsystem3.1IntroductiontoPowerIntegratedCircuitL298NInordertoimprovesystemefficiencyandreducepowerconsumption,thepoweramplifierdrivecircuitadoptstheintegratedcircuitL298NbasedonthebipolarH-bridgepulsewidthmodulationmethod.L298Nisahigh-performancepulse-widthmodulationpoweramplifierproducedbySGS,whichhasthecharacteristicsofsmallsizeandstrongdrivingability.ItcontainstwoH-bridgehigh-voltageandhigh-currentbridgedrivers,whichcanrealizethefull-bridgedriveofthemotorwithasinglechip,whichcandrivemotorsbelow46Vand2A.TheinternalstructureofL298NisshownasinFigure3.Figure3L298Ninternalstructureblockdiagram3.2DCMotorControlSystemHardwareCircuitL298NcandrivetwoDCmotors,becausethespeedcontrolsystemisasingle-axisstructure,inordertomakefulluseoftheloadcapacityofthepoweramplifiercircuit,sothatthesystemstartsatthemaximumaccelerationandbrakesatthemaximumacceleration,inthedesign,theinputterminalandtheoutputterminalareconnectedinparalleltocontroltheDCmotor.Thesingle-chip80C196KCgivesaPWMsignalaccordingtothecalculationresultsofthepositionloopandthespeedloop.ThePWMsignalisdirectlyoutputtotheIN1(IN3)terminal,andthePWMsignalisinvertedandoutputtoIN2(IN4)through7406.WhenthedutycycleofthePWManalogsignalis50%,thepositiveandnegativevoltagesatbothendsofthemotorareappliedforthesametime.Themotorisinastateoftremoratthisposition,thatis,inthepowerlubricationstate.Whenthedutycycleisgreaterthan50%,thesignalvoltageOUTAisgreaterthanOUTB,andthemotorrotatesforward,otherwisereverse.Therefore,theoutputpolarityofeachlinkmustbestraightenedouttoformnegativefeedbackandcompleteclosed-loopcontrol.RelyingonchangingthePWMdutycycletocontrolthemotorspeedcanalsochangethemotorrotationdirection,thecontrolmethodissimpleandreliable.Inaddition,becausethemotorisofelectriccoiltype,reverseelectromotiveforcewillbeformedwhenthemotorhasanemergencystopandsuddencommutation.ToensurethenormaloperationoftheL298Ndrivechip,twopairsofcontinuationsareaddedbetweentheoutputterminalsOUTA,OUTBandtheDCmotor.TheflowdiodeshuntsthecurrenttothepositiveorgroundterminalofthepowersupplytopreventbackelectromotiveforcefromdamagingtheL298N.3.3Anti-interferenceandElectromagneticCompatibilityDesignWhenthemotorisdriven,therapidon-offofthepowermainswitchingelementleadstoalargerateofchangeofpowercurrentandvoltage,whichnotonlyaffectsthedrivecircuitbutalsoentersthecontrolcircuitthroughthepowersupplyandground.Inaddition,whenthemotorstartsandbrakes,thetransientvoltageisgeneratedatthesuddenchangeoftheload,itsamplitudewillbehigherthanthepowersupplyvoltage,andtheleadingedgeissteep,thefrequencybandisverywide,anditentersthecontrolcircuitthroughtheDCpowersupply.Therefore,anti-interferenceandelectromagneticcompatibilitydesignisalsoveryimportant.Thesystemhasadoptedmeasuressuchascurrentsmoothing,deburringandshielding.Currentsmoothing:BecausetheinstantaneousenergyofthePWMswitchisrelativelylarge,theRCfilterisusedattheoutputofthePWMpoweramplifiertofilter.Byselectingtheappropriateresistanceandcapacitancevalues,high-frequencyharmonicsareeffectivelysuppressedandthepeakvoltageofthePWMpoweramplifierisabsorbed.Therebyreducingtheinterference;Deburring:Thesystemincreasesthefiltercapacitoronthepowersupplyside,andusesonelargeandonesmallcapacitorinparallel.Thelargecapacitorisresponsibleforthedecoupling,filtering,andsmoothingoflow-frequencyalternatingsignals,andthesmallcapacitoreliminatesmid-andhigh-frequencyparasiticscouplinginthecircuitnetwork,whicheffectivelyreducesspikesandburrs;Shielding:Themotordrivecableadoptsdouble-shieldedcables,andthewiringshouldbeseparatedfromothercablesasmuchaspossible.Figure4DrivehardwarecircuitdiagramIV.ControlsystemsoftwarerealizationThecontrolsystemadoptsthespeed-positionclosed-loopcombinationmethod,takingthepositioncontrolmethodasanexampletointroducetherealizationmethodofthesoftware.ThepositioncontrolisbasedontheclassicPIcontrolalgorithm,andtheproportionalandintegralparametersaresimplifieddesign,andthesegmentedPIcontrolisintroduced.,Thatis,thecalculatederrorisdividedintosections,anddifferentproportionalandintegralparametersparticipateintheadjustmentwithintheerrorrangeofeachsection,whichensuresthesmootherandmorestableoperationofthesystem.ThederivationandsimplificationprocessofPIformulaisasfollows:ThespecificsoftwareimplementationflowchartisshowninFigure5.Thatis,afterreceivingagivenanglecommand,firstcalculatethedifferencebetweenthesampledpositioninformationandthegivenangle,andthendividethedifferenceintonequalparts,andeachsegmentcorrespondstoasetofparametersKp1andki1participateinmediationcontrol,calculatetheoutputofPIcontrolandthenconvertitintothecorrespondingPWMnumericaloutput.Figure5ThespecificsoftwareimplementationflowchartV.ConclusionThisarticlesumsupthedesignschemeoftheDCmotorPWMcontrolsystembasedon80C196KCandL298N.Thesingle-chipmicrocomputergeneratesPWMsignaltothepowerintegratedcircuitL298N.TheclassicPIsegmentcontrolisusedtocontrolthemotor.Ithasthecharacteristicsofsimplecircuitandconvenientcontrol.Theoperatingtestresultsshowthatthesystemworksstablyandreliably,meetstherequirementsofthespeedregulationfunction,andhasbeensuccessfullyappliedtomanyairborneproducts.FAQWhatisl298n?ThisL298NMotorDriverModuleisahighpowermotordrivermodulefordrivingDCandStepperMotors.ThismoduleconsistsofanL298motordriverICanda78M055Vregulator.L298NModulecancontrolupto4DCmotors,or2DCmotorswithdirectionalandspeedcontrol.Whatistheuseofl298n?TheL298NisadualH-BridgemotordriverwhichallowsspeedanddirectioncontroloftwoDCmotorsatthesametime.ThemodulecandriveDCmotorsthathavevoltagesbetween5and35V,withapeakcurrentupto2A.Howdoesl298ncontrolDCmotorspeed?1.IfyousendaHIGHsignaltotheenable1pin,motorAisreadytobecontrolledandatthemaximumspeed;2.IfyousendaLOWsignaltotheenable1pin,motorAturnsoff;3.IfyousendaPWMsignal,youcancontrolthespeedofthemotor.Themotorspeedisproportionaltothedutycycle.Whatisl298nmotordrivermodule?ThisL298NMotorDriverModuleisahighpowermotordrivermodulefordrivingDCandStepperMotors.ThismoduleconsistsofanL298motordriverICanda78M055Vregulator.L298NModulecancontrolupto4DCmotors,or2DCmotorswithdirectionalandspeedcontrol.Howdoesl298nmotordriverwork?TheL298NisadualH-BridgemotordriverwhichallowsspeedanddirectioncontroloftwoDCmotorsatthesametime.ThemodulecandriveDCmotorsthathavevoltagesbetween5and35V,withapeakcurrentupto2A.Howdoiuseal298motordriverwithArduino?Startbyconnectingpowersupplytothemotors.InourexperimentweareusingDCGearboxMotors(alsoknownasTTmotors)thatareusuallyfoundintwo-wheel-driverobots.Theyareratedfor3to12V.So,wewillconnectexternal12VpowersupplytotheVCCterminal.WhatisthefunctionofHbridge?AnH-bridgeisanelectroniccircuitthatswitchesthepolarityofavoltageappliedtoaload.ThesecircuitsareoftenusedinroboticsandotherapplicationstoallowDCmotorstorunforwardsorbackwards.Whatisthedifferencebetweenl293dandl298n?L293isquadruplehalf-HdriverwhileL298isdualfull-Hdriver,i.e,inL293allfourinput-outputlinesareindependentwhileinL298,ahalfHdrivercannotbeusedindependently,onlyfullHdriverhastobeused....Hence,heatsinkisprovidedinL298.IDescriptionDS18B20isawidelyuseddigitaltemperaturesensor,anditsoutputisadigitalsignal.DS18B20hasthecharacteristicsofsmallsize,lowhardwareoverhead,stronganti-interferenceabilityandhighprecision.TheDS18B20digitaltemperaturesensoriseasytowireandcanbeusedinmanyoccasionsafterbeingpackaged.Suchaspipe,thread,magnetadsorption,stainlesssteelpackageandsoon.ThisArduinoforbeginnerstutorialwillteachyouhowtoreadtheDS18B201-wiretemperaturesensor.CatalogIDescriptionIIIntroductiontoDS18B202.1DS18B20BasicInformation2.2DS18B20Features2.3DS18B20StructureIIIIntroductiontoComponents3.1Memory3.264-bitLithographyROM3.3ConnectionofExternalPowerSupply3.4ConfigurationRegister3.5TemperatureReadingIVDS18B20WorkingPrincipleVConclusionFAQOrdering&QuantityIIIntroductiontoDS18B202.1DS18B20BasicInformationDS18B20isanimprovedintelligenttemperaturesensornewlylaunchedbyAmericanDALLASSemiconductorafterDS1820.Comparedwiththetraditionalthermistor,DS18B20candirectlyreadthemeasuredtemperatureandcanrealizethe9-12-digitdigitalvaluereadingmodethroughsimpleprogrammingaccordingtoactualrequirements.Itcanalsocomplete9-bitand12-bitdigitalquantitiesin93.75msand750ms,respectively.Moreover,theinformationreadfromtheDS18B20ortheinformationwrittenintotheDS18B20onlyneedsoneportline(single-wireinterface)toreadandwrite,andthetemperatureconversionpowercomesfromthedatabus.ThebusitselfcanalsosupplypowertotheconnectedDS18B20withouttheneedforanadditionalpowersupply.Therefore,theuseofDS18B20canmakethesystemstructuresimplerandmorereliable.DS18B20hasgreatlyimprovedcomparedwithDS1820intermsoftemperaturemeasurementaccuracy,conversiontime,transmissiondistance,andresolution.Itbringsmoreconvenientuseandmoresatisfyingeffectstousers.2.2DS18B20FeaturesUnique1-WireInterfaceRequiresOnlyOnePortPinforCommunicationReduceComponentCountwithIntegratedTemperatureSensorandEEPROMMeasuresTemperaturesfrom-55Cto+125C(-67Fto+257F)0.5CAccuracyfrom-10Cto+85CProgrammableResolutionfrom9Bitsto12BitsNoExternalComponentsRequiredParasiticPowerModeRequiresOnly2PinsforOperation(DQandGND)SimplifiesDistributedTemperature-SensingApplicationswithMultidropCapabilityEachDeviceHasaUnique64-BitSerialCodeStoredinOn-BoardROMFlexibleUser-DefinableNonvolatile(NV)AlarmSettingswithAlarmSearchCommandIdentifiesDeviceswithTemperaturesOutsideProgrammedLimitsAvailablein8-PinSO(150mils),8-PinSOP,and3-PinTO-92Packages2.3DS18B20StructureTheexternalstructureofDS18B20isshowninthefigure1.Amongthem:VDDisthepowerinputterminal;DQisthedigitalsignalinput/outputterminal;GNDisthepowerground.Figure1.DS18B20ExternalStructureTheinternalstructureofDS18B20mainlyincludes4parts:64-bitlithographyROM;Temperaturesensor;Non-volatiletemperaturealarmtriggersTHandTL;Configurationregister.Figure2.DS18B20ExternalStructureInthe64-bitROM,themanufacturerhasa64-bitserialnumberburnedbythemanufacturerbeforetheproductleavesthefactory.TheserialnumbercanberegardedastheaddressserialcodeofDS18B20,usedtodistinguisheachDS18B20.Soastobetterrealizethemulti-pointmeasurementoffieldtemperature.IIIIntroductiontoComponents3.1MemoryThememoryofDS18B20includeshigh-speedscratchpadRAMandelectricallyerasableRAM.TheelectricallyerasableRAMalsoincludestemperaturetriggersTHandTL,andaconfigurationregister.Thememorycancompletelydeterminethecommunicationoftheone-lineport,andthenumberiswrittenintotheregisterwiththecommandofwritingtheregister.Thenyoucanusethereadregistercommandtoconfirmthesenumbers.Afterconfirmation,youcanusethecopyregistercommandtotransferthesenumberstotheelectricallyerasableRAM.Whenthenumberintheregisterismodified,thisprocesscanensuretheintegrityofthenumber.ThescratchpadRAMiscomposedof8bytesofmemory.Theninthbytecanbereadwiththereadregistercommand.Thisbyteistocheckthepreviouseightbytes.3.264-bitLithographyROMFor64-bitlithographyROM:Thefirst8bitsaretheowncodeofDS18B20Thenext48bitsareconsecutivedigitalcodesThelast8bitsaretheCRCcheckofthefirst56bits.The64-bitlithographyROMalsoincludes5ROMfunctioncommands:readROM,matchROM,skipROM,searchROMandalarmsearch.3.3ConnectionofExternalPowerSupplyDS18B20canuseexternalpowerVDDorinternalparasiticpower.WhentheVDDportisconnectedtoavoltageof3.0V-5.5V,anexternalpowersupplyisused.AninternalparasiticpowersupplyisusedwhentheVDDportisgrounded.Inaddition,whetheritisaninternalparasiticpowersupplyoranexternalpowersupply,theI/Oportlineshouldbeconnectedtoapull-upresistorofabout5K.3.4ConfigurationRegisterTheconfigurationregisteristoconfiguredifferentdigitstodeterminethetemperatureanddigitalconversion.ItcanbeknownthatR1andR0arethedeterminingbitsoftemperature.DifferentcombinationsofR1andR0canbeconfiguredas9-digit,10-digit,11-digit,and12-digittemperaturedisplay.Inthisway,theconversiontimecorrespondingtodifferenttemperatureconversionpositionscanbeknown.Theresolutionsofthefourconfigurationsare0.5C,0.25C,0.125Cand0.0625C,respectively,andareconfiguredto12bitsatthefactory.3.5TemperatureReadingDS18B20isconfiguredas12bitsatthefactory,and16bitsarereadwhenreadingtemperature.Thefirst5bitsaresignbits.Whenthefirst5digitsare1,thetemperaturereadisanegativenumber;whenthecurrent5digitsare0,thetemperaturereadisapositivenumber.Themethodofreadingwhenthetemperatureispositiveis:justconvertthehexadecimalnumbertodecimal.Whenthetemperatureisnegative,thereadingmethodis:invertthehexadecimalnumber,thenadd1onthisbasis,andthenconverttodecimal.Example:0550H=+85degrees,FC90H=-55degrees.IVDS18B20WorkingPrincipleThereadandwritesequenceandtemperaturemeasurementprincipleofDS18B20arethesameasDS1820.Onlythenumberofdigitsofthetemperaturevalueobtainedvarieswiththeresolution.Andthedelaytimeduringtemperatureconversionisreducedfrom2sto750ms.ThetemperaturemeasurementprincipleofDS18B20isshowninFigure3.Figure3.DS18B20TemperatureMeasurementPrincipleDiagramTheoscillationfrequencyofthecrystaloscillatorwithlowtemperaturecoefficientinthepictureislittleaffectedbytemperature.Itisusedtogenerateafixedfrequencypulsesignalandsendittothesubtractioncounter1.Thehightemperaturecoefficientcrystaloscillatorchangesitsoscillationfrequencysignificantlywithtemperaturechanges.Atthesametime,thegeneratedsignalisusedasthepulseinputofthesubtractioncounter2.Thefigurealsoimpliesacountinggate.Whenthecountinggateisopened,DS18B20countstheclockpulsesgeneratedbythelowtemperaturecoefficientoscillatortocompletethetemperaturemeasurement.Theopeningtimeofthecountinggateisdeterminedbythehightemperaturecoefficientoscillator.Beforeeachmeasurement,firstputthebasecorrespondingto-55℃intothesubtractioncounter1andthetemperatureregisterrespectively.Thesubtractioncounter1andthetemperatureregisterarepresettoabasevaluecorrespondingto-55℃.Thesubtractioncounter1subtractsthepulsesignalgeneratedbythelowtemperaturecoefficientcrystaloscillator.Whenthepresetvalueofthesubtractioncounter1isreducedto0,thevalueofthetemperatureregisterwillincreaseby1,thepresetofthesubtractioncounter1willbereloaded,andthesubtractioncounter1willrestartcountingthepulsesignalsgeneratedbythelowtemperaturecoefficientcrystaloscillator.Thisloopuntilthesubtractioncounter2countsto0,stoptheaccumulationofthetemperatureregistervalue.Thevalueinthetemperatureregisteristhemeasuredtemperatureatthistime.Figure4.DS18B20Theslopeaccumulatorisusedtocompensateandcorrectthenonlinearityinthetemperaturemeasurementprocess,anditsoutputisusedtocorrectthepresetvalueofthesubtractioncounter.Aslongasthecountinggateisnotclosed,repeattheaboveprocessuntilthetemperatureregistervaluereachesthemeasuredtemperaturevalue.ThisisthetemperaturemeasurementprincipleofDS18B20.Inaddition,becausetheDS18B20single-wirecommunicationfunctioniscompletedintimesharing,ithasastrictconceptoftimeslots.Therefore,thereadandwritetimingisveryimportant.VariousoperationsofthesystemtoDS18B20mustbecarriedoutaccordingtotheagreement.Theoperatingprotocolis:initializeDS18B20(sendresetpulse)sendROMfunctioncommandsendmemoryoperationcommandprocessdata.ThetimingdiagramofvariousoperationsisthesameasthatofDS1820.VConclusionInconclusion,thisblogsummarizesthefollowing3aspectsofDS1820:Features,structureandworkingprinciple.DS1820mainlychangesitsappearanceaccordingtodifferentapplications.ThepackagedDS18B20canbeusedinvariousnon-limitingtemperatureapplications.Includingcabletrenchtemperaturemeasurement,blastfurnacewatercirculationtemperaturemeasurement,boilertemperaturemeasurement,machineroomtemperaturemeasurement,agriculturalgreenhousetemperaturemeasurement,cleanroomtemperaturemeasurement,ammunitionstoragetemperaturemeasurement,etc.Inaddition,DS1820isabrasion-resistantandimpact-resistant,smallinsize,easytouse,anddiverseinpackaging,suitablefordigitaltemperaturemeasurementandcontrolofvariousnarrowspaceequipment.FAQWhatisDS18B20temperaturesensor?TheDS18B20isa1-wireprogrammabletemperaturesensorfrommaximintegrated.Itiswidelyusedtomeasuretemperatureinhardenvironmentslikeinchemicalsolutions,minesorsoiletc.Theconstrictionofthesensorisruggedandalsocanbepurchasedwithawaterproofoptionmakingthemountingprocesseasy.HowdoestheDS18B20work?Itworksontheprincipleofdirectconversionoftemperatureintoadigitalvalue.IsDS18B20athermistor?Athermistorisathermalresistor-aresistorthatchangesitsresistancewithtemperature....Thermistorshavesomebenefitsoverotherkindsoftemperaturesensorssuchasanalogoutputchips(LM35/TMP36)ordigitaltemperaturesensorchips(DS18B20)orthermocouples.HowaccurateisDS18B20?TheDS18B20readswithanaccuracyof0.5Cfrom-10Cto+85Cand2Caccuracyfrom-55Cto+125C.Whatisds1820?TheDS18B20isonetypeoftemperaturesensoranditsupplies9-bitto12-bitreadingsoftemperature....Thecommunicationofthissensorcanbedonethroughaone-wirebusprotocolwhichusesonedatalinetocommunicatewithaninnermicroprocessor.HowdoIconnectmyDS18B20tomyRaspberryPi?OnceyouveconnectedtheDS18B20,powerupyourPiandlogin,thenfollowthesestepstoenabletheOne-Wireinterface:1.Atthecommandprompt,entersudonano/boot/config.txt,thenaddthistothebottomofthefile:2.dtoverlay=w1-gpio.3.ExitNano,andrebootthePiwithsudoreboot.WhatistheworkingprincipleofDS18B20?TheDS18B20DigitalThermometerprovides9to12-bit(configurable)temperaturereadingswhichindicatethetemperatureofthedevice.Itcommunicatesovera1-Wirebusthatbydefinitionrequiresonlyonedataline(andground)forcommunicationwithacentralmicroprocessor.Inadditionitcanderivepowerdirectlyfromthedataline(parasitepower),eliminatingtheneedforanexternalpowersupply.ThecorefunctionalityoftheDS18B20isitsdirect-to-digitaltemperaturesensor.Theresolutionofthetemperaturesensorisuser-configurableto9,10,11,or12bits,correspondingtoincrementsof0.5C,0.25C,0.125C,and0.0625C,respectively.Thedefaultresolutionatpower-upis12-bit.WheretouseDS18B20Sensor?TheDS18B20isa1-wireprogrammableTemperaturesensorfrommaximintegrated.Itiswidelyusedtomeasuretemperatureinhardenvironmentslikeinchemicalsolutions,minesorsoiletc.Theconstrictionofthesensorisruggedandalsocanbepurchasedwithawaterproofoptionmakingthemountingprocesseasy.Itcanmeasureawiderangeoftemperaturefrom-55Cto+125withadecentaccuracyof5C.EachsensorhasauniqueaddressandrequiresonlyonepinoftheMCUtotransferdatasoitaverygoodchoiceformeasuringtemperatureatmultiplepointswithoutcompromisingmuchofyourdigitalpinsonthemicrocontroller.HowconnectDS18B20toArduino?FirstplugthesensoronthebreadboardtheconnectitspinstotheArduinousingthejumpersinthefollowingorder:pin1toGND;pin2toanydigitalpin(pin2inourcase);pin3to+5Vor+3.3V,attheendputthepull-upresistor.OnanATMega328P,whyisaDS18B20temperaturesensorreturningincorrecttemperaturevalues?Severalpossibilities:1.Ifitisjustreadingalittlehigh,itmightbecausedbyselfheating.Addaheatsinkand/ormakemeasurementslessfrequently.2.Especiallyifthevaluesarereallywhacky,itmightbecodewitherrorsormis-wiring.Useapublishedsketchtocheckoperation.3.TheDS18B20mightbedefective.Tryanother.4.Itsaccurateto0.5C.Areyouexpectingittobemoreaccurate(likedowntotheLSBofthereadvalue)?

RNR60C5423BSM76_Datasheet PDF

IDescriptionInthisblog,wewillintroduceamultifunctionalelectronicthermometer.Thiskindofthermometercannotonlyaccuratelyandconvenientlymeasurebodytemperatureandfoodtemperature,butalsocanbeusedtomeasureindoorandoutdoortemperature,refrigeratortemperature,etc.Inaddition,italsohasmultiplefunctionssuchastemperaturemeasurementtiming,temperaturememory,soundprompt,backlightdisplay,andautomaticshutdown.Moreover,ithasthecharacteristicsofaccuratemeasurement,simpleoperation,portabilityandlowprice.Therefore,itcanbewidelyusedinhospitalsandhomesasageneraltemperaturemeasuringinstrument.Intermsofitsworkingprinciple,thethermometerusesthedigitaltemperaturesensorDS18B20todetecttemperatureandtransmitsthedigitaltemperaturesignaltothesingle-chipmicrocomputer.Thetemperaturevalueandmeasurementtimecalculatedandcorrectedbythesingle-chipmicrocomputeraredisplayedinrealtimebytheliquidcrystaldisplay.AtutorialonhowtousetheDallasMaxim1-WireDS18B20digitaltemperaturesensorwiththeArduino.CatalogIDescriptionIIDS18B20IntroductionIIIHardwareCircuit3.1PowerCircuit3.2DigitalTemperatureSensorandCalibration3.3MCUCircuit3.4LCDDisplay3.5AudioCircuitIVSoftwareDesignVConclusionFAQOrdering&QuantityIIDS18B20IntroductionDS18B20isasingle-wiredigitaltemperaturesensorproducedbyDALLAS.Itintegratestemperaturesensing,signalconversion,A/Dconversionandheatingfunctionsintoonechip,andbelongstoanewgenerationofintelligentdigitaltemperaturesensorswithmicroprocessors.DS18B20hasatotalof3pins,(respectivelydigitalsignalinput/output,ground,powersupply),usingTO-92small-volumepackaging.DS18B20MainSpecifications:Thetemperaturemeasurementrangeis-55℃~+125℃;Programmableto9to12bitA/Dconversionaccuracy;Thetemperaturemeasurementresolutioncanreach0.0625℃,andtheerroris0.5℃;Theworkingpowersupplycanbeintroducedattheremoteend(3-wireworkingmode)orgeneratedbyparasiticpowersupply(2-wireworkingmode);Themeasuredtemperatureisseriallyoutputwithasign-extended16-bitdigitalquantity;Eachsensorhasaunique64-bitserialnumber,whichisstoredintheROMofthesensor;Thesensoralsohastwotemperatureupperandlowerlimitstorageunits.IIIHardwareCircuitThemultifunctionalelectronicthermometerismainlycomposedofthefollowingparts:PowercircuitDigitaltemperaturesensorSinglechipcomputerLCDMonitorAudiocircuit...ItshardwarecircuitschematicdiagramisshownasinFig.1.Figure1.HardwareCircuit(rightclicktoviewbigpicture)3.1PowerCircuitU1isthemicropowerconsumptionstep-downDC/DCconverterLT3470introducedbyLinearTechnology.Here,U1convertsthe9Vdrybatteryvoltageinto5VDCvoltagetopowertheentirecircuit.So,howtostartandshutdownautomatically?WeonlyneedtopressthestartbuttonS2.Afterstarting,pin1(SHDN)ofU1getsahighlevel,pin5ofU1outputsa5VstableDCvoltage,andthethermometerstartstoworkatthistime.Then,the14-pin(P1.2)oftheone-chipcomputeroutputsahighlevelthroughD2tokeepthe1pinofU1high.When6minutesareup,the14-pinofthesingle-chipmicrocomputeroutputsalowlevel,andthe1pinofU1becomesalowlevel,andthecircuitautomaticallypowersdown.3.2DigitalTemperatureSensorandCalibrationThedigitaltemperaturesensorDS18B20isusedasatemperaturemeasuringprobetocollecttemperaturesignals.Andthedigitizedtemperaturesignalisinputthroughthe19-pin(P1.7)ofthemicrocontroller.DS18B20adopts2-wireworkingmode,andtheworkingpowerisgeneratedbyparasiticpower.Forexample,usethisthermometertomeasurethetemperatureofababy.Wecanfixthetemperatureprobeonaspecialbandageandtieittothearm.Sothatthesensorislocatedunderthearmpit.Inthisway,itcanbeavoidedthatthetemperaturemeasuringprobeisdetachedfromthetestsite.Duetoinfantactivitiesorcryingwhenmeasuringthebodytemperatureoftheinfant,andthemeasurementisconvenient.Foranotherexample,thetemperatureprobecanalsomeasureindoorandoutdoortemperature,refrigeratortemperature,etc.Thespecialprobeformeasuringfoodtemperatureadoptsnon-toxicstrawandnon-toxicsilicagelpackage,whichiseasytoclean.SinceDS18B20isintherangeof-10℃~85℃,itsmeasurementerroris0.5℃.Inordertoaccuratelymeasurebodytemperature,thisblogusesaself-madeconstanttemperaturewaterbathsystemtodeterminethetemperaturecurveofeachsensor.WecancalibratetheDS18B20accordingtothetemperaturecurvetomakethemeasurementerrorwithintherangeof25℃~50℃be0.1℃.3.2.1ConstantTemperatureWaterBathSystemTheconstanttemperaturewaterbathsystemconsistsofthefollowingthreeparts:anelectriccookerwithheatpreservation,acylindricalcopperbodywithgoodheatconduction,andanautomatictemperaturecontroller.Weneedtomake50roundholeswithadiameterof5mmandaheightof30mmonacylindricalcopperbodywithadiameterof120mmandaheightof80mm.Inthisway,thetemperaturesensorcanbefixedandthetemperatureofallthesensorsinthecopperbodycanbekeptconsistent.Putthecylindricalcopperbodyintotheelectriccooker,andadddistilledwatertosubmergethecopperbody.3.2.2DS18B20ActualTemperatureCurveMeasurementInsertmultipleencapsulatedsensorstobetested(nomorethan49)intothesmallholesofthecopperbodyoftheconstanttemperaturewaterbath;Insertthehigh-precisiondigitalthermometerintothesmallholeofthecopperbodytoaccuratelymeasurethecurrenttemperature;Thewiresofallsensorsareledoutthroughtheuppercoverholeoftheelectriccookerandconnectedtotheuppercomputer.Covertheelectriccookerwithheatpreservationmaterial;Turnonthepower,changethetemperaturesettingoftheautomaticthermostat,andcontrolthetemperatureoftheconstanttemperaturewaterbath;Monitorthetemperaturevalueofthedigitalthermometer.Wheneverthespecifiedtemperaturevalueisreached,starttheuppercomputertemperaturemeasurementprogramandsimultaneouslymeasurethecurrenttemperatureofallthesensorstobetested;From25℃~60℃,measure1setofdataevery5℃,andautomaticallygeneratetheactualtemperaturecurveofeachsensor.3.2.3CorrectionofDS18B20Byanalyzingthemeasuredtemperaturecurveofthesensor,wecanfindthatwithintherangeof25℃~50℃,theerroris-0.1℃~-0.3℃.Inthedesignofthisblog,thecurrenttemperaturevalueofDS18B20plus0.2℃isusedastheactualmeasuredtemperature,sothatthemeasurementerrorintherangeof25℃~50℃isreducedto0.1℃.3.3MCUCircuitThemicrocontroller(U2)isthecorecomponentofthethermometer.Ithasthefollowingfunctions:Temperaturesignalreading,processingcalculation,correctionTemperaturemeasurementtimingTemperaturememorySoundprompt,Automaticshutdown...ThisdesignadoptsAT89C2051single-chipmicrocomputerproducedbyAmericanATMELcompany.Itisabuilt-inflashmemorymicrocontrollerthatisfullycompatiblewiththeMCS-51series,withonly20pins.Itisthemostcompact,smallest,andcheapestFlashROMmicrocontrollerintheAT89C51series.Providesthefollowingstandardfunctions:An8-bitCPU;2kBflashmemory;128bytesRAM;Two16-bittimers;Acomplete8-bitbidirectionalI/Oport;5interruptsources.Afterstartingthethermometer,themicrocontrollerstartsaninternaltimertorecordthetemperaturemeasurementtime.ItalsoreadsthedigitaltemperaturesignalsentbyDS18B20,processesandcorrectsittoobtainthereal-timetemperaturevalue.ThetemperaturevalueandtemperaturemeasurementtimearesenttotheLCDdisplayviaserialcommunicationviapin1(P3.0)andpin2(P3.1);Whenthetemperaturemeasurementtimereaches5minutes,thecurrenttemperaturevalueisautomaticallyregistered,andpin11outputsalowleveltocontroltheaudiocircuittogiveasoundprompt;Whenthetemperaturemeasurementtimereaches6minutes,thesingle-chip14pinoutputslowlevel,andthethermometerisautomaticallypoweredoff.3.4LCDDisplayThisblogusesa3andahalfliquidcrystaldisplay(LCD)todisplaytemperatureandtemperaturemeasurementtime.Thedisplayhasthefollowingcharacteristics:Useglassencapsulation;Thereare5pinsintotal;SerialcommunicationWith3andahalfdisplayareaand℃unitdisplay;Functionwithbacklight;Thepowersupplyvoltagerangeis2V~5V.Thisdesignusesthemaindisplayareatoindicatethetemperature,andthesub-displayareatoindicatethetemperaturemeasurementtime.3.5AudioCircuitTheaudiocircuitconsistsofthefollowingparts:TransistorQ2(9015)resistanceR12;CapacitanceC12;BuzzerB1;Whenthepin11ofthesingle-chipmicrocomputeroutputslowlevel,thetransistorQ2issaturatedandturnedon,andthebuzzergeneratesanaudibleprompt.IVSoftwareDesignTheprogramiswrittenin89C51seriesClanguageanddebuggedonthesingle-chipsimulationsystem.TheprogramflowchartisshowninFigure2.Figure2.BlockDiagramofMainProgramAfterpower-onreset,initializetheDS18B20,inputandoutputports,timers,etc.ReadthetemperaturevalueofthelastmeasurementandstoragefromthelowertemperaturelimitstorageunitofDS18B20anddisplayitfor3seconds.StarttheinternaltimerT0ofthemicrocontrollertorecordthetemperaturemeasurementtime.Obtainthetemperaturevalueandcorrecttheerror.AccordingtothecommunicationprotocolofDS18B20,thetemperaturesignalisreadfromthesensor,thesignisdistinguished,andthetemperaturevalueisobtainedaftercalculationandprocessing.Then,add0.2Ctothetemperaturevalueastheactualtemperature,andcorrectthemeasurementerrorwithintherangeof25Cto50Cto0.1C.Displayoftemperature.Accordingtothecommunicationprotocoloftheliquidcrystaldisplay,thetemperaturevalueandtemperaturemeasurementtimearesenttothedisplayfordisplay.Themaindisplayareaindicatesthetemperature,andthesecondarydisplayareaindicatesthetemperaturemeasurementtime.Whenthetemperaturemeasurementtimereaches5minutes,the11-pinofthesingle-chipmicrocomputeroutputsalow-levelcontrolaudiocircuittoemitapromptsound,andthecurrenttemperatureissenttothelowertemperaturestorageunitofDS18B20forregistration,andsenttothesecondarydisplayareafordisplay.Whenthetemperaturemeasurementtimereaches6minutes,the14-pinofthesingle-chipmicrocomputeroutputslowlevel,andthethermometerautomaticallypowersdown.VConclusionComparedwithtraditionalthermometers,theDS18B20Multi-functionElectronicThermometerdesignedinthisbloghasmanyadvantages.Thelatterovercomesthedifficultyofreadingmercurythermometersandiseasytobebrokenandpollutetheenvironment.Atthesametime,comparedwithsimpleelectronicthermometers,multifunctionalelectronicthermometersalsoovercometheshortcomingsofpoormeasurementaccuracy.Becauseofitscompletefunctions,stableperformance,smallsize,lightweight,lowpowerconsumption,andlowprice,itcanbeusedasageneraltemperaturemeasuringinstrumentandwidelyusedinhospitalsandhomes.FAQWhatisDS18B20temperaturesensor?TheDS18B20isa1-wireprogrammabletemperaturesensorfrommaximintegrated.Itiswidelyusedtomeasuretemperatureinhardenvironmentslikeinchemicalsolutions,minesorsoiletc.Theconstrictionofthesensorisruggedandalsocanbepurchasedwithawaterproofoptionmakingthemountingprocesseasy.HowdoestheDS18B20work?Itworksontheprincipleofdirectconversionoftemperatureintoadigitalvalue.IsDS18B20athermistor?Athermistorisathermalresistor-aresistorthatchangesitsresistancewithtemperature....Thermistorshavesomebenefitsoverotherkindsoftemperaturesensorssuchasanalogoutputchips(LM35/TMP36)ordigitaltemperaturesensorchips(DS18B20)orthermocouples.HowaccurateisDS18B20?TheDS18B20readswithanaccuracyof0.5Cfrom-10Cto+85Cand2Caccuracyfrom-55Cto+125C.Whatisds1820?TheDS18B20isonetypeoftemperaturesensoranditsupplies9-bitto12-bitreadingsoftemperature....Thecommunicationofthissensorcanbedonethroughaone-wirebusprotocolwhichusesonedatalinetocommunicatewithaninnermicroprocessor.HowdoIconnectmyDS18B20tomyRaspberryPi?OnceyouveconnectedtheDS18B20,powerupyourPiandlogin,thenfollowthesestepstoenabletheOne-Wireinterface:1.Atthecommandprompt,entersudonano/boot/config.txt,thenaddthistothebottomofthefile:2.dtoverlay=w1-gpio.3.ExitNano,andrebootthePiwithsudoreboot.WhatistheworkingprincipleofDS18B20?TheDS18B20DigitalThermometerprovides9to12-bit(configurable)temperaturereadingswhichindicatethetemperatureofthedevice.Itcommunicatesovera1-Wirebusthatbydefinitionrequiresonlyonedataline(andground)forcommunicationwithacentralmicroprocessor.Inadditionitcanderivepowerdirectlyfromthedataline(parasitepower),eliminatingtheneedforanexternalpowersupply.ThecorefunctionalityoftheDS18B20isitsdirect-to-digitaltemperaturesensor.Theresolutionofthetemperaturesensorisuser-configurableto9,10,11,or12bits,correspondingtoincrementsof0.5C,0.25C,0.125C,and0.0625C,respectively.Thedefaultresolutionatpower-upis12-bit.WheretouseDS18B20Sensor?TheDS18B20isa1-wireprogrammableTemperaturesensorfrommaximintegrated.Itiswidelyusedtomeasuretemperatureinhardenvironmentslikeinchemicalsolutions,minesorsoiletc.Theconstrictionofthesensorisruggedandalsocanbepurchasedwithawaterproofoptionmakingthemountingprocesseasy.Itcanmeasureawiderangeoftemperaturefrom-55Cto+125withadecentaccuracyof5C.EachsensorhasauniqueaddressandrequiresonlyonepinoftheMCUtotransferdatasoitaverygoodchoiceformeasuringtemperatureatmultiplepointswithoutcompromisingmuchofyourdigitalpinsonthemicrocontroller.HowconnectDS18B20toArduino?FirstplugthesensoronthebreadboardtheconnectitspinstotheArduinousingthejumpersinthefollowingorder:pin1toGND;pin2toanydigitalpin(pin2inourcase);pin3to+5Vor+3.3V,attheendputthepull-upresistor.OnanATMega328P,whyisaDS18B20temperaturesensorreturningincorrecttemperaturevalues?Severalpossibilities:1.Ifitisjustreadingalittlehigh,itmightbecausedbyselfheating.Addaheatsinkand/ormakemeasurementslessfrequently.2.Especiallyifthevaluesarereallywhacky,itmightbecodewitherrorsormis-wiring.Useapublishedsketchtocheckoperation.3.TheDS18B20mightbedefective.Tryanother.4.Itsaccurateto0.5C.Areyouexpectingittobemoreaccurate(likedowntotheLSBofthereadvalue)?

DescriptionDS18B20isatemperaturesensorofMaxim.Thesingle-chipmicrocomputercancommunicatewithDS18B20through1-Wireprotocolandfinallyreadthetemperature.Thehardwareinterfaceofthe1-Wirebusisverysimple,justconnectthedatapinofDS18B20toanIOportofthemicrocontroller.ThisVideoIntroducesDS18B20withDatasheetCatalogDescriptionDocumentandMediaDS18B20PinoutParametersAdvantageFeaturesApplicationsDS18B20CircuitSchematicDS18B20TemperatureSensorDataDS18B20BlockDiagramHowtousetheDS18B20SensorWheretouseDS18B20SensorProductManufacturerFAQOrdering&QuantityDocumentandMediaComponentDatasheetDS18B20DatasheetDS18B20PinoutPinNameFunctionSOSOPTO-921,2,6,7,82,3,5,6,7-N.C.NoConnection383VDDOptionalVDD.VDDmustbegroundedforoperationinparasitepowermode.412DQDataInput/Output.Open-drain1-Wireinterfacepin.Alsoprovidespowertothedevicewhenusedinparasitepowermode(seethePoweringtheDS18B20section.)541GNDGroundParametersAccuracy(C)0.5ChannelsOneInterface1-WireMultiDroppableYesOper.Temp.(C)-55to+125Package/PinsSOIC(N)/8,TO92/3,UMAX/8ParasitePwr.YesPartNumberDS18B20SensorTypeLocalTemp.Resolution(bits)9,10,11,12Temp.Thresh.Programmable(NV)AdvantageTheDS18B20digitalthermometerprovides9-bitto12-bitCelsiustemperaturemeasurementsandhasanalarmfunctionwithnonvolatileuser-programmableupperandlowertriggerpoints.TheDS18B20communicatesovera1-Wirebusthatbydefinitionrequiresonlyonedataline(andground)forcommunicationwithacentralmicroprocessor.Inaddition,theDS18B20canderivepowerdirectlyfromthedataline(parasitepower),eliminatingtheneedforanexternalpowersupply.EachDS18B20hasaunique64-bitserialcode,whichallowsmultipleDS18B20stofunctiononthesame1-Wirebus.Thus,itissimpletouseonemicroprocessortocontrolmanyDS18B20sdistributedoveralargearea.ApplicationsthatcanbenefitfromthisfeatureincludeHVACenvironmentalcontrols,temperaturemonitoringsystemsinsidebuildings,equipment,ormachinery,andprocessmonitoringandcontrolsystems.FeaturesUnique1-WireInterfaceRequiresOnlyOnePortPinforCommunicationReduceComponentCountwithIntegratedTemperatureSensorandEEPROMMeasuresTemperaturesfrom-55Cto+125C(-67Fto+257F)0.5CAccuracyfrom-10Cto+85CProgrammableResolutionfrom9Bitsto12BitsNoExternalComponentsRequiredParasiticPowerModeRequiresOnly2PinsforOperation(DQandGND)SimplifiesDistributedTemperature-SensingApplicationswithMultidropCapabilityEachDeviceHasaUnique64-BitSerialCodeStoredinOn-BoardROMFlexibleUser-DefinableNonvolatile(NV)AlarmSettingswithAlarmSearchCommandIdentifiesDeviceswithTemperaturesOutsideProgrammedLimitsAvailablein8-PinSO(150mils),8-PinSOP,and3-PinTO-92PackagesApplicationsConsumerProductsIndustrialSystemsThermallySensitiveSystemsThermometersThermostaticControlsDS18B20CircuitSchematicDS18B20TemperatureSensorDataDS18B20canachievethehighest12-bittemperaturestoragevaluethroughprogramming.Thetemperaturestoragevalueisstoredintheregisterinacomplementformat.Thereare2bytesintotal,LSBisthelowbyteandMSBisthehighbyte.Amongthem,MSbisthehighbitofthebyte,andLSbisthelowbitofthebyte.Forbinarynumbers,themeaningofthetemperaturerepresentedbyeachofthemisexpressed.Amongthem,Srepresentsthesignbit,andthelower11bitsareallpowersof2,whichareusedtorepresentthefinaltemperature.ThetemperaturemeasurementrangeofDS18B20isfrom-55degreesto+125degrees.Themanifestationoftemperaturedatahaspositiveandnegativetemperatures.Eachnumberintheregisterisdistributedlikethescaleofacaliper.Thelowestbitofthebinarynumberchanges1,whichrepresentsthemappingrelationshipofatemperaturechangeof0.0625degrees.Whenthetemperatureis0℃,thecorrespondinghexadecimalnumberis0x0000.Whenthetemperatureis125℃,thecorrespondinghexadecimalnumberis0x07D0.Whenthetemperatureisminus55℃,thecorrespondinghexadecimalnumberis0xFC90.Conversely,whenthenumberis0x0001,thetemperatureis0.0625℃.DS18B20BlockDiagramHowtousetheDS18B20SensorThesensorworkswiththemethodof1-Wirecommunication.Itrequiresonlythedatapinconnectedtothemicrocontrollerwithapullupresistorandtheothertwopinsareusedforpowerasshownbelow.Thepull-upresistorisusedtokeepthelineinhighstatewhenthebusisnotinuse.Thetemperaturevaluemeasuredbythesensorwillbestoredina2-byteregisterinsidethesensor.Thisdatacanbereadbytheusingthe1-wiremethodbysendinginasequenceofdata.Therearetwotypesofcommandsthataretobesenttoreadthevalues,oneisaROMcommandandtheotherisfunctioncommand.TheaddressvalueofeachROMmemoryalongwiththesequenceisgiveninthedatasheetbelow.Youhavetoreadthroughittounderstandhowtocommunicatewiththesensor.IfyouareplanningtointerfaceitwithArduino,thenyouneednotworryaboutallthese.Youcandevelopthereadilyavailablelibraryandusethein-builtfunctionstoaccessthedata.WheretouseDS18B20SensorTheDS18B20isa1-wireprogrammableTemperaturesensorfrommaximintegrated.Itiswidelyusedtomeasuretemperatureinhardenvironmentslikeinchemicalsolutions,minesorsoiletc.Theconstrictionofthesensorisruggedandalsocanbepurchasedwithawaterproofoptionmakingthemountingprocesseasy.Itcanmeasureawiderangeoftemperaturefrom-55Cto+125withadecentaccuracyof5C.EachsensorhasauniqueaddressandrequiresonlyonepinoftheMCUtotransferdatasoitaverygoodchoiceformeasuringtemperatureatmultiplepointswithoutcompromisingmuchofyourdigitalpinsonthemicrocontroller.ProductManufacturerMaximIntegratedprovideseaseofdesign,andspeedstimetomarket,throughanalogintegration.ThecompanysanalogICsofferextrafeaturesandfunctionalitycarefullydesignedtostreamlinecircuitandsimplifydesign.LooktoMaximforsolutionsforconsumerelectronics,personalcomputersandperipherals,mobiledevices,wirelessandfibercommunications,testequipment,instrumentation,videodisplays,andautomotiveapplications.Maximsanalogandmixed-signalsolutionsincludedataconverters,interfacecircuits,power,RFwirelesscircuits,clocksandoscillators,microcontrollers(MCUs),operationalamplifiers(opamps),andsensors.FAQWhatisDS18B20temperaturesensor?TheDS18B20isa1-wireprogrammabletemperaturesensorfrommaximintegrated.Itiswidelyusedtomeasuretemperatureinhardenvironmentslikeinchemicalsolutions,minesorsoiletc.Theconstrictionofthesensorisruggedandalsocanbepurchasedwithawaterproofoptionmakingthemountingprocesseasy.HowdoestheDS18B20work?Itworksontheprincipleofdirectconversionoftemperatureintoadigitalvalue.IsDS18B20athermistor?Athermistorisathermalresistor-aresistorthatchangesitsresistancewithtemperature....Thermistorshavesomebenefitsoverotherkindsoftemperaturesensorssuchasanalogoutputchips(LM35/TMP36)ordigitaltemperaturesensorchips(DS18B20)orthermocouples.HowaccurateisDS18B20?TheDS18B20readswithanaccuracyof0.5Cfrom-10Cto+85Cand2Caccuracyfrom-55Cto+125C.Whatisds1820?TheDS18B20isonetypeoftemperaturesensoranditsupplies9-bitto12-bitreadingsoftemperature....Thecommunicationofthissensorcanbedonethroughaone-wirebusprotocolwhichusesonedatalinetocommunicatewithaninnermicroprocessor.HowdoIconnectmyDS18B20tomyRaspberryPi?OnceyouveconnectedtheDS18B20,powerupyourPiandlogin,thenfollowthesestepstoenabletheOne-Wireinterface:1.Atthecommandprompt,entersudonano/boot/config.txt,thenaddthistothebottomofthefile:2.dtoverlay=w1-gpio.3.ExitNano,andrebootthePiwithsudoreboot.WhatistheworkingprincipleofDS18B20?TheDS18B20DigitalThermometerprovides9to12-bit(configurable)temperaturereadingswhichindicatethetemperatureofthedevice.Itcommunicatesovera1-Wirebusthatbydefinitionrequiresonlyonedataline(andground)forcommunicationwithacentralmicroprocessor.Inadditionitcanderivepowerdirectlyfromthedataline(parasitepower),eliminatingtheneedforanexternalpowersupply.ThecorefunctionalityoftheDS18B20isitsdirect-to-digitaltemperaturesensor.Theresolutionofthetemperaturesensorisuser-configurableto9,10,11,or12bits,correspondingtoincrementsof0.5C,0.25C,0.125C,and0.0625C,respectively.Thedefaultresolutionatpower-upis12-bit.WheretouseDS18B20Sensor?TheDS18B20isa1-wireprogrammableTemperaturesensorfrommaximintegrated.Itiswidelyusedtomeasuretemperatureinhardenvironmentslikeinchemicalsolutions,minesorsoiletc.Theconstrictionofthesensorisruggedandalsocanbepurchasedwithawaterproofoptionmakingthemountingprocesseasy.Itcanmeasureawiderangeoftemperaturefrom-55Cto+125withadecentaccuracyof5C.EachsensorhasauniqueaddressandrequiresonlyonepinoftheMCUtotransferdatasoitaverygoodchoiceformeasuringtemperatureatmultiplepointswithoutcompromisingmuchofyourdigitalpinsonthemicrocontroller.HowconnectDS18B20toArduino?FirstplugthesensoronthebreadboardtheconnectitspinstotheArduinousingthejumpersinthefollowingorder:pin1toGND;pin2toanydigitalpin(pin2inourcase);pin3to+5Vor+3.3V,attheendputthepull-upresistor.OnanATMega328P,whyisaDS18B20temperaturesensorreturningincorrecttemperaturevalues?Severalpossibilities:1.Ifitisjustreadingalittlehigh,itmightbecausedbyselfheating.Addaheatsinkand/ormakemeasurementslessfrequently.2.Especiallyifthevaluesarereallywhacky,itmightbecodewitherrorsormis-wiring.Useapublishedsketchtocheckoperation.3.TheDS18B20mightbedefective.Tryanother.4.Itsaccurateto0.5C.Areyouexpectingittobemoreaccurate(likedowntotheLSBofthereadvalue)?TexasInstrumentshasintroducedahighlyintegratedGrade0brushlessDC(BLDC)motordriverfor48-Vhigh-powermotorcontrolsystems,suchastractioninvertersandstartergeneratorsinmildhybridelectricvehicles(MHEVs).TheDRV3255-Q1canhelpdesignersshrinktheirmotorsystemsizebyasmuchas30%,whileprovidingtheindustryshighestgate-drivecurrentforincreasedprotectionandoutputpower.Meetingthemoststringentsafetyrequirements,thenewmotordriverwasdesignedaccordingtoTIsTÜVSÜD-certifiedfunctionalsafetydevelopmentprocess,helpingenableuptoAutomotiveSafetyIntegrityLevel(ASIL)D.Tohelpdecreasegreenhousegasemissionsglobally,automobilemanufacturersareincreasingtheproductionofMHEVs,whichuse48-Vmotor-drivesystemstohelpreduceemissionsfromavehiclesinternalcombustionengine.TheTIFunctionalSafety-CompliantDRV3255-Q1allowsmanufacturerstodesignamotor-drivesystemtohelpenableMHEVsystemsuptoASILD,supplyingasmuchas30kWofmotorpowerwhichcanimprovetheresponsetimeofa48-Vmotor-drivesysteminheavyvehicles.TheDRV3255-Q1istheindustrysfirstthree-phase,48-VBLDCmotordrivertointegratehigh-andlow-sideactiveshort-circuitlogic,whicheliminatesexternaltransistorsandcontrollogic.Byintegratingtheactiveshort-circuitlogicanddynamicfaultresponse,thenewmotordriverenablesdesignerstonotonlysimplifytheirdesigns,butalsosupplyasmuchas30kWofmotorpower,whilereducingboardspaceandbill-of-materialscostin48-Vmotor-drivesystems.Theactiveshort-circuitlogicfeaturegivessystemdesignerstheflexibilitytoarrangemetal-oxidesemiconductorfield-effecttransistor(MOSFET)connectionsbasedonsystemneeds,andhelpspreventcatastrophicsystemfailuresduetoovervoltage.Thedynamicfaultresponseautomaticallyswitchesthemotordrivertoactiveshort-circuitmodeinovervoltageconditions,whichprotectsthevehiclesmotorandelectricalcomponentsfromovervoltagestresswhileoptimizingsystemperformance.TheDRV3255-Q1suppliestheindustryshighestoutputpowerlevelstoimprove48-Vmotor-drivesystemresponsetimes,allowingdriverseveninheavyvehicleslikeSUVsandtruckstoacceleratemorequicklyafterstopping.Formotorsrequiringcurrentsashighas600A,theDRV3255-Q1providestheindustryshighestgate-drivecurrent,whichcandirectlydriveupto1,000-nCgate-chargeMOSFETs.ForMoreInformationTexasInstruments

AspenCoreisrollingoutanewvirtualconferencethatprovidesthenextroadmapforautonomousvehicles(AVs)andelectricvehicles(EVs).Designedfortheautomotiveindustryanditstechnologysupplierswhoareinfusingcarswithsparksandsenses,theeventwilltakeplacefromMarch23to25,2021,andissupportedbyEETimes,PowerElectronicsNews,andEDN.Theautomotiveindustryisofftotheracesinvehicleelectrificationandvehicleautomation.Carsareaskedtodetectandclassifyobjectsandalsotrackandpredictwhereandhowthoseobjectsarelikelytomovenext.ToenableEVstochargefasteranddrivefarther,automotivepowerelectronicsdesignersneedwide-bandgapsemiconductormaterials(GaNandSiC)andnewpowertrainarchitecturethatcanmeetEVsefficiencyandpowerdensityrequirements.Toobtainmaximumautonomyfromthebatterycapacity,theentirepowerconversionchainmustreachthemaximumefficiencypossible.Batteriesmusthaveaveryhighenergystoragedensity.MorecomputingpowerwillletcarOEMsdifferentiatetheirvehicles,butitwillalsodirectlyaffectEVmileage.Powermanagementinsideavehiclebecomesincreasinglyimportant.Theautonomyofanelectriccardirectlyreflectstheefficiencyofitspowertrainsystem.Inaddition,thenecessaryinfrastructures,suchaspowerfulfast-chargingsystems,aresimilarlyaskedtocomplywithstrictlydefinedsizeandefficiencylimits.TheRoadmaptoNext-GenEVAVConferencewilloffervehicledesignersbuildingblockstohelpsuccessfullydeveloppower-efficient,advancedEVswithautomatedfeatures.Keynotes,panels,andlectureswillshedlightonthepitfallsandchallengesfacingnewvehicledesignsandsuggeststrategiesandsolutionsforcardesigners.AgendaRegistration tothevirtualeventisopennow.Clickheretoviewtheprogram.Keynotespeakersinclude:AnaVillamor,technologymarketanalystatYoleDéveloppementAlexQ.Huang,professoratUniversityofTexas,AustinAnupBhalla,VPofengineeringatUnitedSiCPhilKoopman,co-founderofEdgeCaseResearchandassociateprofessoratCarnegieMellonUniversityPhilMagney,founderofVSILabsEgilJuliussen,autoindustryanalystIvoMarocco,directorofmarketingandbusinessdevelopmentatTexasInstrumentsColinBarnden,leadanalystatSemicastResearchPanelDiscussion:HowWillWide-BandgapSemiconductorsMoveEVsForward?Paneldiscussionwithexpertsfromresearchandindustry,moderatedbyEETimeseditorMaurizioDiPaoloEmilioEVsandhybridelectricvehicles(HEVs)arelookingforpower-conversion–efficientsolutions.Theyincludeseveralpowertrainstages.Wide-bandgapsemiconductorssuchassiliconcarbideandgalliumnitrideprovidesuperiorperformancecomparedwithsilicon:higherefficiencyandswitchingfrequency,higheroperatingtemperature,andhigheroperatingvoltage.PanelDiscussion:WhereIstheDividingLineBetweenAVsandADAS?Paneldiscussionwithexpertsfromresearchandindustry,moderatedbyEETimeseditorJunkoYoshidaThispaneltacklesoneofthethorniestquestionsaboutAVsandADAS.Weaskourpanelists:AreAVsplacedattheendoftheevolutionarypathofADAS?WhatseparatesAVsfromADAS—legally,socially,economically,andtechnically?RequirementsforsensorsandprocessorsforAVsandADAS:Howfarapartarethey?DoOEMslookforasingleplatformwheretheirADAScangrowintoanAV,ortwoseparateplatforms?PanelDiscussion:PowertrainTechnologiesforEVDesignPaneldiscussionwithexpertsfromresearchandindustry,moderatedbyEETimeseditorMaurizioDiPaoloEmilioTheEVrevolutionisspeedingupthetrendtowardamoresustainablefuture.TheperformancekeysinEVdesignarethebatteryandthepropulsionsystem.Thedesignparametersinvolvepowerlevel,conversionefficiency,operatingtemperatureinthevehiclepowertrainsystem,thermalenergydissipationcapacity,andsystempackage.PanelDiscussiononDriverMonitoringPaneldiscussionwithexpertsfromresearchandindustry,moderatedbyEETimeseditorJunkoYoshidaTheautomotiveindustryislookingintonewtechnologiestomonitorthestatusofthedriverandoccupantsinsideacar.Astheyintroducemoreautomatedfeaturesintotheirvehicles,carmakersseeitimperativetodetectthedriversalertnessandattentiontothedrivingtask.Thepanelwillexplorestate-of-the-artDMStechnologies—DMSrequirementsforsensorsandprocessors,variouswaystoimplementDMSalgorithms(prosandcons)insideavehicle,andwhatexactlyOEMsandTierOnesarelookforinaDMS.MarottaControlshasannouncedavailabilityandfinalqualificationofthePS11200—thefourthvariantinthe1-STEPproductline.Thisswitchmodepowersupply(SMPS)offers11,200Wattsoffullyisolatedoutputpowerwith91percentefficiencyatfullload.Itisdesignedtoreplacelegacy400ampsolutionsthatgenerallyproduceunregulatedorlooselyregulatedpowerinalargerfootprint.MarottaalsoconfirmedtodaythatthePS11200haspassedallnecessaryqualificationteststoensurethepowerconvertersreliabilityandperformancewithinruggedenvironmentscommonlypresentedbyheavy-liftmilitary/defenseaircraftsuchasC-130HerculescargoplanesandCH-47Chinooktransporthelicoptersaswellasunmannedaerialvehicles.Historically,multiplestepsarerequiredtoconvert3-phaseACinputpowertoanisolatedandregulatedDCoutputwithpowerfactorcorrection.Eachconversionstepaddsitsowncomplexityandcomponents,contributingtolossofefficiencyaswellasbulk.Inturn,designersultimatelymakedifficulttrade-offsinsize,weight,powerandcost(SWaP-C)outcomes.Marottadevelopedthepatented1-STEPAC-DCconversionsolutiontominimizethosecompromises.A1-STEPconverterisaninnovativecircuitsolutionthatachievesactivepowerfactorcorrection(APFC),outputvoltageregulation,andelectricalisolationinasingleconversionstep.Deliveredinacompactlight-weightpackagethatcanbeupto30percentlighterthancompetitiveofferings,itmeetskeymilitaryandcommercialavionicstandardswhiledeliveringincreasedefficiencyandpowerdensity.Wefirstlaunchedthe1-STEPproductfamilyin2016,saidMichaelGerminario,SeniorTechnicalDirector–BusinessDevelopment,MarottaControls.Awiderangeofaerospace,groundandmarinesystemsandequipmentrequireregulatedDCpower.Butsolutionstodatehavebeencumbersomeandcostly.ForMoreInformationMarottaControls

TexasInstruments(TIs)newBQ25790andBQ25792buck-boostbattery-chargerintegratedcircuitsolutionsoffermaximumpowerdensityanduniversalandfastchargingupto97%efficiency.TheICssupportlowquiescentcurrentandoffertheflexibilitytochargebatteriesfromonetofourcellsinaseriesandupto5Aofchargingcurrentovertheentireinputvoltagerange(3.6Vto24V)forUSBType-C,USBType-CPowerDelivery(USBPD),andwirelessapplications.Thesenewsolutionswillbeusedinsmallpersonalelectronicequipment,portablemedicaldevices,andbuildingautomationapplications.USB-Type-C/PDadaptersaregainingpopularityandarebecomingauniversalchargingstandard,saidSamuelWong,productlinemanager,batterymanagementsolutions,atTexasInstruments.Thehigh-power-densityperformanceofBQ25790andBQ25792canhelpdesignengineersleverageincreasedinputpowerfromUSB-PDandprovideflexibilityfordifferent(1Sto4S)batteryconfigurations.DownloadourGaNandSiCtechnologieseBookFastchargingLimitedbatterylifecompromisestheautonomyofsmartphoneusers.Nomatterhowremarkablethenewestsmartphonebatteriesare,theirsizeisstilllimited.Manufacturerstrytomakephonesincreasinglymoreenergy-efficient,butthosephoneskeepgettingusedforincreasinglypower-hungryapplications.Theresultisthat,often,yourbatterywontlastuntiltheeveningifchargedjustonce.Thefastrechargeallowsyoutoquicklyrestorethebatterylifeofthedeviceusingsometechnicaltricks.Batterychargersforfastchargingalsoactonthevoltagevaluesoastosignificantlyincreasethepoweroutput.Thechargingstandardsareacomplicatedmixofchemistryandphysics,andbecauseeachonehasitslimits,incompatibilityitselfcouldbeaproblem.Smartphonebatteriesrechargewhenacurrentflowsthroughthem.Highercurrentandhighervoltagesrechargebatteriesfaster,buttheresalimittowhattheycantake.Thechargeregulator(IC)protectsagainstdangerouscurrentsurgesbyregulatingtheoverallflowofelectricityintoandoutofthebattery.USBPDoffersausefulalternativeforfastandefficientcharginginawiderangeofapplications.TheoutputvoltagerangeofUSBPDisadjustablefordifferentbattery-powereddeviceswithdifferentbatteryconfigurationstoutilizethe5-Wto100-W(20-V/5-A)powerspectrumofUSBPD.TIsbuck-boostICsUniversalchargingallowschargingfromcaradaptersorUSBPDadapters,bringinganewlevelofflexibilityandconveniencetoawiderangeofdevices,especiallyinthemedicalfield.On-the-go(OTG)chargingissupportedbybidirectionalcharging.Tomeetconsumersexpectations,designersarelookingforsolutionsthatextendbatteryruntimeandutilizemaximumbatterycapacitywhileefficientlychargingandreducingheatdissipationtominimizepowerlosswithinthechargerIC.ThenewTIfamilyofintegratedbuck-boostchargerICs,includingtheBQ25790andBQ25792,usestheUSBPDinputforgreaterflexibilitywhencharging1S–4Sbatteriesinthe3.6-Vto24-Vinputvoltagerange.Thedevicesuseaverylow-power-consumptionchargingICtoextendbatteryruntimeduringoperationandtosaveasmuchbatterypoweraspossiblewhentheapplicationisnotinuse.Inadditiontotheultra-lowpowerconsumption,chargersareequippedwithatop-offtimerthatallowsadditionalchargingaboveanormalchargecycle,allowingthebatteryamaximumcapacitycharging.TheBQ25790andBQ25792multicellbuck-boostchargersuselessthan1µAofquiescentcurrent.CombinedwithanextremelylowbatteryFETresistorof8mΩ,engineerscanfurthermaximizebatteryoperatingtimeforapplicationsrequiringlongperiodsofoperation(Figure1).Figure1:BQ25790blockdiagram(Image:TI)Therearetwoprimarychallengesforquiescentcurrentinportableelectronicdesign:Thefirsttypeofquiescentcurrentisshutdownmodeforlongshelflifeduringequipmenttransportationandstorage,saidSamuelWong.TheBQ25790andBQ25792provideashutdownmodeaslowas0.6µA.TheshutdownmodenotonlyminimizesICcurrentconsumption,italsocutsoffthesystemcompletelyfromthebatterytoavoidsystempowerconsumption.Thisallowsthebatterytomaintainfullcapacityformonths.Thesecondtypeofquiescentcurrentisbatterymode,whichisusedwhenabatteryisusedtopowerasystem.Inordertoprovidealongbatteryruntime,thesebuck-boostbatterychargersaredesignedtominimizethecurrentconsumedbytheICitself.Thenewbuck-boostchargersfullyintegratethefollowingcomponents:metal-oxidesemiconductorfield-effecttransistors(MOSFETs),abatteryFET,current-sensingcircuits,andadualinputselectorswitch.Thereductioninthenumberofcomponentsisparticularlyimportantforapplicationssuchassmartspeakers,whicharesmallerinsizeandhavelowerpricesasmarketadoptionincreases.Therearealwaystradeoffsforcomponentintegrationsintermsofarea,cost,andperformance,saidWong.TheBQ25790andBQ25792integratefourbuck-boostconverterMOSFETs,abatteryFET,andtwocurrent-senseresistorswithina10-mm2(WCSP)or16-mm2(QFN)package,respectively.Thisdramaticallyshrinksthesolutionsizebyover50%topackdoublethepowerdensityinthePCBfootprint.Withourhigh-efficiencypowerconverterandinnovativepackaging,thechargerssupportupto155mW/mm2.Thesmallintegratedsolutionnotonlyincreasespowerdensity,italsoprovidesabetteruserexperiencewithsimpledesignandminimumBOM.Thebuck-boostchargerhasbecomeincreasinglypopularinrecentyearsduetoitsabilitytochargeabatteryfromalmostanyinputsourceandmeetthedemandsofType-CandPDUSBadapters.AcriticaladvantageofthewidespreadadoptionofUSBType-Cisarealisticpathtoauniversaladapterandthecorrespondingreductioninelectronicwaste.High-power-densitybuck-boostchargersshouldintegratenotonlygeneralfunctionalchargingblocksbutalsootherssuchasDC/DCconverterstosimplifysystemdesign.Figure2showsasystemblockdiagramforaUSBPDchargingsolution.Figure2:BlockdiagramforaUSBPDchargingsolution(Image:TIsarticle)TheDC/DCconverterdischargesthebatterytocreateaVBUSregulatedvoltageandpowerexternaldeviceswhentheadapterisnotpresent.Intheabsenceoftheadapter,back-to-backMOSFETsinthedischargepowerpathwillswitchon,switchingtheoutputvoltageU3toVBUSandmaintainingtheVBUSvoltage.ThiskeepstheDC/DCconverteralwayson.Aspartoftheinputovervoltageandovercurrentprotectioncircuit,thecontrollogicandadrivercircuitfortheexternalback-to-backMOSFETsarealsointegratedinthecharger.Figure3:Thefullyintegratedbuck-boostcharge(Image:TIsarticle)Thefullyintegratedbuck-boostchargershowninFigure3cansimplifythesystem-widedesignofaUSBPDchargingsolution.Aspartoftheinputovervoltageandovercurrentprotectioncircuit,thecontrollogicanddrivercircuitryforexternalback-to-backMOSFETsarealsointegratedintothecharger.Thesefeatureseliminatetheunitthatsupportsinputpowerpathmanagementandinputcurrentdetectionfromtheblockdiagram.Figure4:USBType-CFRSrealizedbysinglebuck-boostcharger(Image:TIsarticle)Figure5:Buck-boostchargerFRSfromVBUSsinktoVBUSsource(Image:TIsarticle)Inordertosupportfastroleswap(FRS)fortheType-CUSBport,thisintegratedbuck-boostchargerimplementsanewbackupmodethatcanmonitortheVBUSvoltage;theVBUSvoltagedroppingbelowthepresetthresholdindicatestheremovaloftheadapter.FRSisagreatnewfeatureoftheUSBPD3.0,whereinadevicethatisprovidingpowercanquicklychangeitspowerroletobecomeanenergyconsumerinordertomaintainaconsistentdataconnection.FRShelpspreventanydatalossthatcanoccurwhenpowerisunexpectedlyremovedfromadevice(Figures4and5).ThisarticlewasoriginallypublishedonsistersiteEETimes.Powerboxnowoffersacomprehensiveruggedizedproductlinefordefenseapplicationsanddemandingindustrial.Theproductlineincludessevenseriesofnewpowersupplies,comprisingthreeDC/DC(DAA-DAB-DAC),fourAC/DC(DBA-DBB-DBC-DBD)andembracingapowerrangefrom50Wupto1,200W. Inmetalchassisformatwithabaseplateforconductioncooling,theDAxandDBxseriescanbeusedwithabaseplateoperatingtemperaturerangeof-40upto+100degreesC.ForextremelydemandingapplicationstheycanbeconfiguredwithaconformalcoatingandmechanicallyruggedizedaswellaselectricallyruggedizingtowithstandharshtransientsanddemandingEMCperformancerequirementsasrequiredwithmostcommondefense,marine,avionics,ruggedindustrialandrailwaystandards.Designedforhighavailability,shorttime-to-marketandtomeetcommercialandmilitaryoff-the-shelf(COTS/MOTS)businessmodels,themodularbuildstyleoftheDAxandDBxseriesallowsuptosixoutputswhichcanbeconnectedinserial,parallelorusedasastandaloneoutput–theyreveryversatileproducts.Readytouse‘outofthebox,DefenseLineDC/DCDAA/DAB/DACpowersuppliesincludeaveryefficientinputfilter,reversevoltageprotectioninternaldiode,inputtransientprotectionandaninternalfusetoprotectagainstdamageintheeventoffailure.Eachoutputisprotectedagainstaccidentalandpermanentshort-circuitsituations.Aninternalover-temperaturecircuit(OTP)protectstheunitsinthecaseofoverheating,withautomaticrecovery.Tocoverthelargerangeofapplicationsindefenseorruggedizedindustrialareas,theDAA/DAB/DACseriesisavailableforusewithfiveinputbusvoltagesof12,24,48,72,and110VDCandwithalargerangeofoutputvoltagesfrom3.3VDCupto48VDC.Eachoutputvoltageisadjustable,andhigherpoweroutputsarecompensatedusingtheprovidedsenses.ForMoreInformationPowerbox

Designersofspace-constraineddesignscannowsignificantlyincreaseruntimewiththeMAX20361single-/multi-cellsolarharvesterwithmaximumpowerpointtracking(MPPT)fromMaximIntegratedProducts,Inc.(NASDAQ:MXIM).Theindustryssmallestsolarharvestingsolutionisidealforspace-constrainedapplicationssuchaswearablesandemerginginternetofthings(IoT)applications.DesignersareoftenchallengedwiththetradeoffbetweensmallsizeandlongruntimeforwearableandIoTapplications.Byenablingsolarcharginginthesehighlyspace-constrainedproducts,theMAX20361canextendtheruntimeofthosedevicesbyprovidingasupplementalpowersource.Thissolarharvesterreducessolutionsizebyatleasthalfcomparedtotheclosestcompetitor.Inaddition,theMAX20361increasesharvestedenergywithupto5percentbetterboostefficiencythantheclosestcompetitor,coupledwithanadaptiveMPPTapproachwhichcanimprovetheoverallsystemlevelefficiencyevenfurther.KeyAdvantagesSmallestSize:Industryssmallestsolarharvestingsolutionduetoreducedcomponentsizeandsmaller,fewerexternalcomponents;atleast50percentsmallersolutionsizecomparedtotheclosestcompetitorHigherEfficiency:Increasedboostefficiencymaximizesharvestedenergywithupto5percentbetterboostefficiencythantheclosestcompetitor;additionalharvestinggainscanbeachievedthroughadaptiveMPPTfeaturescoupledwiththeuniqueintegratedharvestinggaugeforreal-timeindicationsofefficiencytooptimizeperformanceForMoreInformationMaximIntegrated

Copyright © 苏ICP备11090050号-1 tl431 datasheet All Rights Reserved. 版权投诉及建议邮箱:291310024@725.com